Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh Thư
Xem chi tiết
Thắng Phúc
27 tháng 6 2020 lúc 16:47

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC

Khách vãng lai đã xóa
Hằng Thanh
Xem chi tiết
vi lê
Xem chi tiết
Hằng Thanh
Xem chi tiết
Hằng Thanh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2018 lúc 9:05

a, Sử dụng tỉ số lượng giác trong tam giác vuông ∆AMO ta tính được  A O M ^ = 60 0

b, Tính được  A O B ^ = 120 0 , sđ  A B C ⏜ = 120 0

c, Ta có  A O C ⏜ = B O C ⏜ => A C ⏜ = B C ⏜

vi lê
Xem chi tiết
vi lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2021 lúc 13:51

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)

Suy ra: \(\widehat{BOC}=2\cdot\widehat{BOA}\)

Xét ΔOBA vuông tại B có 

\(\cos\widehat{BOA}=\dfrac{BO}{OA}=\dfrac{R}{R\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

hay \(\widehat{BOA}=45^0\)

Do đó: \(\widehat{BOC}=2\cdot\widehat{BOA}=2\cdot45^0=90^0\)

hay \(sđ\stackrel\frown{BC}=90^0\)

Vậy: \(sđ\stackrel\frown{BC}=90^0\)

vi lê
7 tháng 1 2021 lúc 13:44

GIÚP MÌNH VỚI!khocroikhocroikhocroi

Nguyễn Hương Ly
9 tháng 10 2021 lúc 18:27

Đáp án là gì vậy ạ 

My Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2021 lúc 23:06

a) Xét \(\Delta\)AOB vuông tại B có 

\(\cos\widehat{AOB}=\dfrac{OB}{OA}\)(Tỉ số lượng giác góc nhọn)

\(\Leftrightarrow\cos\widehat{AOB}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)

hay \(\widehat{AOB}=60^0\)

Vậy: \(\widehat{AOB}=60^0\)

b) Ta có: ΔOBA vuông tại B(OB⊥BA)

nên \(\widehat{AOB}+\widehat{BAO}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BAO}=30^0\)

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AO là tia phân giác của \(\widehat{BAC}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{BAO}=\widehat{CAO}\)

hay \(\widehat{CAO}=30^0\)

Ta có: \(\widehat{CAO}+\widehat{MAO}=\widehat{MAC}\)(Vì tia AO nằm giữa hai tia AM,AC)

hay \(\widehat{MAO}=60^0\)

Xét ΔMOA có 

\(\widehat{MAO}=60^0\)(cmt)

\(\widehat{MOA}=60^0\)(\(\widehat{AOB}=60^0\))

Do đó: ΔMOA đều(Dấu hiệu nhận biết tam giác đều)

⇒MA=MO(đpcm)

c) Ta có: ΔOBA vuông tại B(OB⊥BA)

mà BI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)

nên \(BI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AI=\dfrac{OA}{2}\)(I là trung điểm của OA)

nên BI=AI(1)

Ta có: ΔOCA vuông tại C(OC⊥CA)

mà CI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)

nên \(CI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AI=\dfrac{AO}{2}\)(I là trung điểm của OA)

nên CI=AI(2)

Từ (1) và (2) suy ra IA=IB=IC

hay I là giao điểm 3 đường trung trực của ΔABC

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: \(\widehat{BAC}=\widehat{BAO}+\widehat{CAO}\)(tia AO nằm giữa hai tia AB,AC)

hay \(\widehat{BAC}=60^0\)

Xét ΔABC có AB=AC(cmt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)(cmt)

nên ΔABC đều(Dấu hiệu nhận biết tam giác đều)

Xét ΔABC đều có I là giao điểm 3 đường trung trực của tam giác(cmt)

mà trong tam giác đều, giao điểm 3 đường trung trực cũng chính là giao điểm của 3 đường phân giác(Định lí tam giác đều)

nên I là giao điểm của 3 đường phân giác trong ΔBAC

hay I là tâm đường tròn nội tiếp ΔABC(đpcm)