Cho P = (x 2 + a)(1 + a) + a 2 x 2 + 1 (x 2 − a)(1 − a) + a 2 x 2 + 1 . Kết luận nào sau đây là đúng?
A. P = a 2 x + a a + 1
B. P không phụ thuộc vào x.
C. P không phụ thuộc vào a.
D. P phụ thuộc vào cả a và x.
1) Cho 0 < x < 2 Tìm min A = 2/(2-x) +1/x
2) Cho x>1 Tìm min A = x/2 +2/(x-1)
3) cho 0 < x<1 tìm min A = x/(x-1) +4/x
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
Cho biểu thức A= (3x2-4 / x2-1 - 2/1-x - 2/x+1) : (1- x/x+1) với x khác 1; -1
a) Rút gọn A
b) Tìm x thuộc Z sao cho A là số nguyên chia hết cho 2013
a) \(ĐKXĐ:\) \(x\ne\pm1\)
\(A=\left(\frac{3x^2-4}{x^2-1}-\frac{2}{1-x}-\frac{2}{x+1}\right):\left(\frac{1-x}{x+1}\right)\)
\(=\left(\frac{3x^2-4}{\left(x-1\right)\left(x+1\right)}+\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+1}{1-x}\)
\(=\frac{3x^2-4+2x+2-2x+2}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{1-x}\)
\(=\frac{3x^2}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{1-x}\)
\(=-\frac{3x^2}{\left(x-1\right)^2}\)
1, Cho biểu thức :
A = ( (3/x^2 - 1 ) + (1/x + 1)) : 1/x+1
a, Rút gọn A
b, Tính A khi x = 2/5
c, Tìm x để A=5/4
d, Tìm x để A > 1/2
e, Tìm GTNN của biểu thức : B = (x^2 + 12 )/(x-1) * 1/A
2, Cho biểu thức :
A = (x^2/ (x^2 + x)) - ((1-x)/ ( x +1))
a, Nêu điều kiện và rút gọn A.
b, Tìm x để A = 1
c, Tìm x để A<2
Bài 1 :
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)
\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)
\(\Leftrightarrow A=\frac{x+2}{x-1}\)
b) Thay x = \(\frac{2}{5}\)vào A ta được :
\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)
c) Để \(A=\frac{5}{4}\)
\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)
\(\Leftrightarrow4x+8=5x-5\)
\(\Leftrightarrow x=13\)
d) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)
\(\Leftrightarrow2x+4-x+1>0\)
\(\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
Bài 2 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)
\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)
\(\Leftrightarrow A=\frac{2x-1}{x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow\frac{2x-1}{x+1}=1\)
\(\Leftrightarrow2x-1=x+1\)
\(\Leftrightarrow x=2\)
b) Để \(A< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)
\(\Leftrightarrow2x-1-2x-1< 0\)
\(\Leftrightarrow-2< 0\)(luôn đúng)
Vậy A < 2 <=> mọi x
cho A=x^3+a*x^2+2*x+b; B=x^2+x+1. tìm a,b sao cho A chia cho B dư x+1
bài 1:Cho M=(1+$\frac{a}{a^{2}+1}$) :($\frac{a}{a^{2}-1}$-$\frac{2a}{a^{3}-a^{2}+a-1}$ )
a)tìm điều kiện xác định
b)rút gọn M
bài 2:cho f(x)=2$x^{2}$+ax+1 và g(x)=x-3
tìm a để f(x):g(x) dư 4
Bài 1: cho A= x^2+4x+4/x^2-4
a) tìm x để A=5/3
b) tìm x để A nguyên
Bài 2: cho x+1/x=3, tính:
a) x^2+1/x^2
b) x^5+1/x^5
a )\(A=\frac{x^2+4x+4}{x^2-4}=\frac{\left(x+2\right)^2}{x^2-2^2}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}=\frac{5}{3}\)
<=> (x + 2).3 = (x - 2).5
<=> 3x + 6 = 5x - 10
<=> 3x - 5x = - 10 - 6
<=> - 2x = - 16
=> x = 8
b ) \(\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
đến đây tự tìm đc
Bài 2 lớp 8 ko làm đc thì đi chết đi
bài 1 cho buổi thức
A= (x-3 + 1/x-1) .( x-1-1/x-1)
a, Rút gọn A
b, tìm giá trị của x để A >5
bài 2 cho biểu thức
A= (x/x2-4 + 1/x+2 - 2/x-2) : (1- x/x+2)
a, Rút gọn A
b, thính A khi x=-4
giúp mình với mình đang cần gấp tối đi học rồi
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
Cho biểu thức A= (3x2-4 / x2-1 - 2/1-x - 2/x+1) : (1- x/x+1) với x khác 1; -1
a) Rút gọn A
b) Tìm x thuộc Z sao cho A là số nguyên chia hết cho 2013
a: \(A=\dfrac{3x^2-4+2\left(x+1\right)-2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{x+1}{x+1-x}\)
\(=\dfrac{3x^2-4+2x+2-2x+2}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{x+1}{1}\)
\(=\dfrac{3x^2}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{x+1}{1}=\dfrac{3x^2}{x-1}\)
b: Để A chia hết cho 2013 thì A=2013k
=>3x2=2013k(x-1)(k∈Z)
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)