Chờ a,b > 0 Cm a^2 / b + b^2/a > hoặc = a+b
cho a,b,c> hoặc=0 và a+b+c=2 CM 2 căn 2< hoặc= căn(a+b) + căn(b+c) + căn(c+a)< hoặc= 2 căn 3
Chọn từ hoặc cụm từ : (1) trùng nhau; (2) 0; (3) độ dài đoạn thẳng; (4) khoảng cách giữa hai điểm; (5) cách, điền vào chỗ trống thích hợp trong mỗi câu sau đây để diễn đạt đúng về độ dài đoạn thẳng.
a) AB = 2 (cm) còn nói là .......A và B bằng 2(cm) hoặc nói là ...............AB bằng 2 (cm) hoặc A...........B một khoảng bằng 2 (cm)
b) Hai điểm A và B trùng nhau còn nói là ......A và B bằng ..........hoặc A...............B một khoảng bằng ......hoặc ...........AB bằng ...........
c) AB = 0 còn nói là ............A và B bằng .........hoặc hai điểm A và B ............hoặc ...........AB bằng ..............hoặc A .............B một khoảng bằng ...........
a) AB = 2 (cm) còn nói là ..(4)..A và B bằng 2(cm) hoặc nói là ..(3)..AB bằng 2 (cm) hoặc A ..(5)..B một khoảng bằng 2 (cm)
b) Hai điểm A và B trùng nhau còn nói là ..(4)..A và B bằng ..(2)..hoặc A ..(5)..B một khoảng bằng ..(2)..hoặc ..(3)..AB bằng ..(2)..
c) AB = 0 còn nói là ..(4)..A và B bằng ..(2)..hoặc hai điểm A và B ..(1)..hoặc ..(3)..AB bằng ..(2)..hoặc A ..(5)..B một khoảng bằng ..(2)..
Với a,b,c > 0 Cm (a^2+b^2)c + (b^2 + c^2 )a + ( c^2 + a^2 )b > hoặc = 6abc
cm bđt a^2 /b+c + b^2/c+a + c^2/a+b lớn hơn hoặc bằng a + b + c / 2 biết a,b,c >0
chờ a,b,c thỏa mãn a+b+c=0.cmr ab+bc+ca<hoặc bằng 0
Cho a,b>0 thỏa mãn a+b lớn hơn hoặc bằng 2. Cm \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\) bé hơn hoặc bằng 1
Ta co:
\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)
Ta di chung minh:
\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)
Dat \(t=a+b\left(t\ge2\right)\)
BDT can chung minh la:
\(\frac{t+2}{t^2}\le1\)
\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)
Dau '=' xay ra khi \(a=b=1\)
Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)
\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)
Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)
\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))
\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)
\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))
Dấu bằng xảy ra khi và chỉ khi a=b=1
chờ a,b,c,đ ka 0 thỏa mãn b^2=ac ;c^2=bd và b^3+c^3+d^3 khác 0 CM a63+b^3+c^3/b^3+c^3+d^3=c/d
CMR với mọi a,b,c thực thì
A) a^2+b^2+c^2+ab+Bc+ca lớn hơn hoặc bằng 0
B)a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
Cm hộ e ạ nếu CM đẳng thức thì giải thích đẳng thức cho e dc k ạ
A) a2+b2+c2+ab+bc+ca>=0 (*)
<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0
<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0
<=> (a+b)2+(b+c)2+(c+a)2>=0
BĐT cuối luôn đúng với mọi a,b,c
Vậy BĐT (*) đc cm
Phần B cũng tương tự nhé
a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2
Mà \(\left(a+b+c\right)^2\ge0\forall x\)
Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)
b) hình như sai đề rồi bạn à !
Cho a,b không âm. CM: \(\sqrt{\frac{a+b}{2}}\)lớn hơn hoặc bằng \(\sqrt{\frac{\sqrt{a}+\sqrt{b}}{2}}\)
Với a>0. CM: a+ \(\frac{1}{a}\)lớn hơn hoặc bằng 2
CM cái sau:
Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)
Chứng minh:
\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
(áp dụng vào cái trên)
Dấu "=" xảy ra khi:
\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)