Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh Đức
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hiiiii~
22 tháng 5 2017 lúc 18:01

a) AB = 2 (cm) còn nói là ..(4)..A và B bằng 2(cm) hoặc nói là ..(3)..AB bằng 2 (cm) hoặc A ..(5)..B một khoảng bằng 2 (cm)

b) Hai điểm A và B trùng nhau còn nói là ..(4)..A và B bằng ..(2)..hoặc A ..(5)..B một khoảng bằng ..(2)..hoặc ..(3)..AB bằng ..(2)..

c) AB = 0 còn nói là ..(4)..A và B bằng ..(2)..hoặc hai điểm A và B ..(1)..hoặc ..(3)..AB bằng ..(2)..hoặc A ..(5)..B một khoảng bằng ..(2)..

Hoàng Bảo Ngọc
Xem chi tiết
Nguyễn Thị Ngọc Ly
Xem chi tiết
Trần Hữu Tuyển
18 tháng 3 2017 lúc 20:36

bạn sử dụng BĐT SVACXO

Neet
18 tháng 3 2017 lúc 21:29

cauchy từng cặp

phạm minh khuê
Xem chi tiết
Lê Thành An
Xem chi tiết
Nyatmax
30 tháng 11 2019 lúc 19:12

Ta co:

\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)

Ta di chung minh:

\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)

Dat \(t=a+b\left(t\ge2\right)\)

BDT can chung minh la:

\(\frac{t+2}{t^2}\le1\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)

Dau '=' xay ra khi \(a=b=1\)

Khách vãng lai đã xóa
Nguyễn Phương Thảo
30 tháng 11 2019 lúc 19:35

Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)

\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)

Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)

\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))

\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)

\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên  \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))

Dấu bằng xảy ra khi và chỉ khi a=b=1

Khách vãng lai đã xóa
truong hung dung
Xem chi tiết
Bùi Đạt Khôi
Xem chi tiết
NGUYEN HAI ANH
7 tháng 9 2017 lúc 21:18

A) a2+b2+c2+ab+bc+ca>=0 (*)

<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0

<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0

<=> (a+b)2+(b+c)2+(c+a)2>=0

BĐT cuối luôn đúng với mọi a,b,c 

Vậy BĐT (*) đc cm

Phần B cũng tương tự nhé

l҉o҉n҉g҉ d҉z҉
7 tháng 9 2017 lúc 21:19

a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2

Mà \(\left(a+b+c\right)^2\ge0\forall x\)

Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)

b) hình như sai đề rồi bạn à !

Higashi Mika
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 8 2020 lúc 21:39

CM cái sau: 

Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)

Chứng minh: 

\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

(áp dụng vào cái trên)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
7 tháng 8 2020 lúc 21:41

Dấu "=" xảy ra khi:

\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)

Khách vãng lai đã xóa