CMR:với mọi k thuộc N* thì số A=1+92k+772k+19772k không là số chính phương
Chứng minh rằng với mọi k thuộc tập N thì số A=1+ 92k+ 772k+ 19772k không là số chính phương
cmr:Với mọi n là số tự nhiên thì số A=n^2 +4^n+5 không chia hết cho 8
CMR:Với mọi n thì n4k+1 và n có cùng chứ số tận cùng (k thuộc n)
các bạn giúp mik nhanh nhé. mik cần gấp
Bài 1:
a. Chứng minh với mọi số tự nhiên n thì 3n + 4 không là số chính phương?
b. Tìm n thuộc N để n2 + 2n+ 2 có là số chính phương
Giải càng nhanh càng tốt.
CMR với mọi n thuộc N , n> 0 thì n^4+2n^3+2n^2+2n+1 không phải là số chính phương
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
chứng minh rằng:với mọi n thuộc N thì n2+2017 không là số chính phương
CMR: với mọi n thuộc N, n>0 thì:
A=n4+2n3+2n2+2n+1 không phải là số chính phương
Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.
Chứng minh rằng với mọi n thuộc N thì 3n+4 không là số chính phương .
Lời giải:
Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.
Khi đó:
$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$
Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.
$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.
$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).