Chứng minh rằng: 2 + i 1 - i 1 + i i = 2 - 2 2 i
1)Chứng minh rằng
N= 3-10x^3 - 6xy- 57hr+ 96rq chia hết cho x^2yhrq
2) Chứng minh rằng
P = 369^3 - 219^3 chia hết cho 1350
Ta có:\(B=3-10x^2-4xy-4y^2\)
\(=3-9x^2-x^2-4xy-4y^2\)
\(=3-9x^2-\left(x^2+4xy+4y^2\right)\)
\(=3-\left(3x\right)^2-\left(x+2y\right)^2\)
Vì \(\hept{\begin{cases}\left(3x\right)^2\ge0\\\left(x+2y\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-\left(3x\right)^2\le0\\-\left(x+2y\right)^2\le0\end{cases}}\)
\(\Rightarrow B=3-\left(3x\right)^2-\left(x+2y\right)^2\le3-0-0=3\)
Nên GTLN của B là 3 đạt được khi \(\hept{\begin{cases}3x=0\\x+2y=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=-x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow}x=y=0\)
Câu 2: Cho tam giác DEF cân tại D (D<90°). Vẽ EH ⊥DF tại H, FK ⊥DE tại K. Gọi O là giao điểm của EH và FK.
a) Chứng minh rằng △KEF=△HFE, DH =DK
b) Chứng minh rằng DO là tia phân giác của góc EDF .
c)Chứng minh rằng HK//EF
d) Gọi I là trung điểm cạnh EF. Chứng minh rằng D, O, I thẳng hàng.
tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE
Xét tam giác KEF và tam giác HFE
có EF chung
góc EKF=góc EHF = 900
góc KEF=góc HFE (CMT)
suy ra tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)
suy ra EK = HF
mà DK+KE=DE, DH+HF=DF
lại có DE=DF (CMT)
suy ra KD=DH
b) xét tam giác DKO và tam giác DHO
có DO chung
góc DKO = góc DHO = 900
DK = DH (CMT)
suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)
suy ra góc KDO = góc HDO
suy ra DO là tia phân giác của góc EDF (1)
c) Vì DK = DH suy ra tam giác DKH cân tại D
suy ra góc DKH= góc DHK
suy ra góc DKH+ góc DHK + góc KDH = 1800
suy ra góc DKH=(1800 - góc KDH) :2 (2)
Tam giác DEF cân tại D
suy ra góc DEF + góc DFE + góc EDF = 1800
suy ra góc DEF = (1800 - góc KDH) :2 (3)
Từ (2) và (3) suy ra góc DKH = góc DEF
mà góc DKH đồng vị với góc DEF
suy ra KH // EF
d) Xét tam giác DEI và tam giác DFI
có DE = DF (CMT)
DI chung
EI = IF
suy ra tam giác DEI = tam giác DFI (c.c.c)
suy ra góc EDI = góc FDI
suy ra DI là tia phân giác của góc EDF (4)
Từ (1) và (4) suy ra DO trùng DI
hay ba điểm D, O, I thẳng hàng.
Bài 1 :
Cho A = 13 + \(13^2+13^3+13^4+13^5+13^6.\) Chứng minh rằng A \(\)chia hết cho 2 .
Bài 2 :
Cho C = \(2+2^2+2^3+.....+2^{2011}+2^{2012}\). Chứng minh rằng C chia hết cho 3 .
Bài 3 :
Chứng minh rằng : A = \(2^1+2^2+2^3+.....+2^{59}+2^{60}\)chia hết cho 7
Bài 4 :
Cho A = \(7+7^3+7^5+....+7^{1999}\) . Chứng minh rằng A chia hết cho 35
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
CÁC BẠN ƠI GIÚP MÌNH VỚI NHA@
Viết một đoạn văn chứng minh một trong 2 đề sau:
Đề 1: Chứng minh rằng nói dối có hại cho bản thân.
Đề 2: Chứng minh rằng Bác Hồ luôn thương yêu thiếu nhi.
Đề 1; Chứng minh rằng nói dối có hại cho bản thân
Đề 2 :Chứng minh rằng Bác Hồ luôn yêu thương các em thiếu nhi
Bài 1 :
Chứng minh rằng : a . ( 5n + 7 ) . ( 4n + 6 ) chia hết cho 2 , b . ( 8n + 1 ) . ( 4n + 5 ) không chia hết cho 2 , với n là số tự nhiên .
Bài 2 :
Chứng minh rằng : abab chia hết cho 101 .
Bài 3 :
Chứng minh rằng : ( n + 10 ) . ( n + 15 ) chia hết cho 2 với n là số tự nhiên .
Bài 4 :
Chứng minh rằng với mọi số tự nhiên n thì 30n + 12 chia hết cho 6 nhưng không chia hết cho 8 .
Cho hình chữ nhật abcd.gọi M,N,K lần lượt là trung diểm AH,BH,CD trong đó H là hình chiếu vuông góc của B lên AC
1 chứng minh rằng tứ giác MNCK là hình bình hành.
2 chứng minh rằng N là trực tâm tam giác BCM.
3 chứng minh rằng tứ giác BMKC nội tiếp
4 Đường tròn nội tiếp tứ giác BMKC cắt AB tại I( I khác B ).Chứng mình rằng 2AI^2=AM.AC
Chứng minh rằng : GTNN của I x - 2 I + I x - 1995 I là 1993.
|x - 2| + |x - 1995|
= |x - 2| + |-x + 1995| \(\ge\)|x - 2 - x 1995|
\(\Rightarrow\left|x-2\right|+\left|-x+1995\right|\ge\left|1993\right|=1993\)
\(\Rightarrow\left|x-2\right|+\left|x-1995\right|\ge1993\)
\(\Rightarrow Min_{\left|x-2\right|+\left|x-1995\right|}=1993\)
1.Chứng minh rằng đa thức B(x) không có nghiệm, biết rằng: B(x)=x^2+5
2. Cho tam giác ABC vuông tại A ,đường phân giác BK(K €AC); kẻ KH vuông góc BC(H€BC), E là giao điểm của KH và AB.
Chứng minh: Tam giác ABC bằng tam giác HBKChứng minh: KB là đường trung trực của AHGọi I là trung điểm của EC. Chứng minh rằng: 3 điểm B,K,I thẳng hàng1. Ta có :
B(x)=x2+5 mà x2 luôn > hoặc = 0
và 5>0
=>x2+5 luôn > 0
Vậy đa thức B(x) không có nghiệm
Ta có : B ( x ) = x^2 + 5
Mà x^2 lớn hơn hoặc bằng 0
5 > 0
Suy ra x^2 + 5 > 0
Suy ra đa thức B ( x ) không có nghiệm
Bài 1: Chứng minh rằng :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
Bài 2: Chứng minh rằng :
Cho S =\(3^0+3^2+3^4+3^6+...+3^{2002}\)
a.Tính S
b.Chứng minh rằng S chia hết cho 7
Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
Ta thấy :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)
\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Nhân xét :
\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)
\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\)
\(\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}\)
\(\Rightarrow A< \dfrac{99}{100}\)
Vì \(A< \dfrac{99}{100}< 1\)
\(\Rightarrow A< 1\)
Bài 1)
Đặt \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4};....;\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{100}\) < 1 \(\Rightarrow\) A < 1
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)< 1
Bài 1:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1\left(đpcm\right)\)
Bài 2: bạn xem lại xem có phải \(S=3^0+3+3^2+...+3^{2002}\) không nhé!