Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Anh Tuấn
Xem chi tiết

a: \(x^2-8x+5\)

\(=x^2-8x+16-11\)

\(=\left(x-4\right)^2-11\ge-11\forall x\)

Dấu '=' xảy ra khi x-4=0

=>x=4

b: \(a^3+b^3+c^3=3bac\)

=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

=>\(\left(a+b+c\right)\left\lbrack\left(a+b\right)^2-c\left(a+b\right)+c^2\right\rbrack-3ab\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

=>\(a^2+b^2+c^2-ab-ac-bc=0\)

=>\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)

\(=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3}{3^2}=\frac13\)

Thommas Tonny
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2020 lúc 21:15

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

mà \(a+b+c\ne0\)

nên \(a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)

\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)

Bolbbalgan4
Xem chi tiết
Không Tên
26 tháng 11 2017 lúc 19:00

Ta có:  a3(b - c) + b3(c - a) + c3(a - b)

= a3(b - c) - b3(b - c) - b3(a - b) + c3(a - b)

= (b - c)(a3 - b3) - (b3 - c3)(a - b)

= (b - c)(a - b)(a2 + ab + b2) - (a - b)(b - c)(b+ bc + c2)

= (a - b)(b - c)(a2 + ab + b2 - b2 - bc - c2)

= (a - b)(b - c)(a2 + ab - bc - c2)

= (a - b)(b - c)[(a + c)(a - c) + b(a - c)]

= (a - b)(b - c)(a - c)(a + b + c) = 0   ( vì a + b + c = 0 )

Thi Bùi
Xem chi tiết
Xyz OLM
21 tháng 12 2020 lúc 21:20

Ta có : a3 + b3 + c3 = 3abc

=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0

=> [(a + b)3 + c3] - [(3ab(a + b) + 3abc] = 0

=> (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

=> a2 + b2 + c2 - ab- ac - bc = 0

=> 2(a2 + b2 + c2 - ab- ac - bc) = 0

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0

=> (a - b)2 + (b - c)2 + (a - c)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)

Khi đó M = \(\frac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}=\frac{3.c^{2020}}{\left(3c\right)^{2020}}+\frac{3c^{2020}}{3^{2020}.c^{2020}}=\frac{1}{3^{2019}}\)

Khách vãng lai đã xóa
haru
Xem chi tiết
prince lonely
8 tháng 4 2018 lúc 17:04

đáp án 3 cậu nhân chéo rồi so sánh a;b;c thì bằng nhau => cậu tự nghĩ nhá

Trần Ngọc Hoàng
Xem chi tiết
nguyễn thị huyền trang
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Thái Viết Nam
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

nguyen van bi
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Khách vãng lai đã xóa
Makoto Kun
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 9:56

1: (a-1)(a-3)(a-4)(a-6)+9

=(a^2-7a+6)(a^2-7a+12)+9

=(a^2-7a)^2+18(a^2-7a)+81

=(a^2-7a+9)^2>=0

b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)

a^2-4a+1=0

=>a=2+căn 3 hoặc a=2-căn 3

=>A=11-4căn 3 hoặc a=11+4căn 3

Quỳnh Châu
Xem chi tiết
Hoài Thu Vũ
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 15:48

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

Gia Huy
19 tháng 6 2023 lúc 15:50

câu (b) cho đa thức P (x) = cái gì?

Đào Thu Hoà
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:22

câu a dùng biến đổi tương đương là được

Khách vãng lai đã xóa