giá trị lớn nhất của biểu thức:-x^2+x-2 jup em với
a. Với giá trị nào của x thì biểu thức A = 1001 − | x + 9 | có giá trị lớn nhất? a. Với giá trị nào của x thì biểu thức A = 1001 − | x + 9 | có giá trị lớn nhất? Tìm giá trị đó
a. Với giá trị nào của x thì biểu thức A = 1001 − | x + 9 | có giá trị lớn nhất? Tìm giá trị đó. b. Với giá trị nào của y thì biểu thức B = | y − 2 | + 34 có giá trị nhỏ nhất? Tìm giá trị đó.
ai làm được tôi tick cho
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
\(A=\dfrac{\left(x+2\right)^2}{x};B=x\left(x+2\right)+\dfrac{x^2+6x+4}{x}\) với x ≠ 0
a. Tính giá trị của biểu thức A biết x > 0 ; \(x^2=3-2\sqrt{2}\)
b. Rút gọn biểu thức \(M=A-B\)
c.Tìm x để biểu thức M đạt giá trị lớn nhất .Tìm giá trị lớn nhất đó ?
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Ai giúp mình với !
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(5.\)
\(x^2-48x+65\)
\(=\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)
Vậy \(Max=-511\)khi \(x=24\)
Mọi người giúp mk với ak
1.Tìm giá trị nhỏ nhất của biểu thức:
a,A=x^2 - x - 1
b,B=4x^2 - 4xy + 2y^2 - 4y + 1
2.Tìm giá trị lớn nhất của biểu thức:
M= (-x^2) + 6xy - 9y^2 + 2.
B tự trình bày nhé, mk chỉ hướng dẫn thôi.
\(A=x^2-x-1=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{5}{4}=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{5}{4}\forall x\)
\(B=\left(4x^2-2.2xy+y^2\right)+\left(y^2-2.y.2+2^2\right)-4=\left(2x-y\right)^2+\left(y-2\right)^2-4\ge-4\forall x;y\)
\(M=-x^2+6xy-9y^2+2=-\left(x^2+2.x.3y+9y^2\right)+2=-\left(x+3y\right)^2+2\ge2\forall x;y\)
Tham khảo nhé~
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Với x là số nguyên.
a) Tìm giá trị nhỏ nhất của biểu thức: M = (2x - 4)4 + 5.
b) Tìm giá trị lớn nhất của biểu thức: N = 10 - / x + 2 /
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
với giá trị nào của x thì biểu thức : P=-x2-8x+5.Có giá trị lớn nhất. Tìm giá trị lớn nhất đó?
P = - x2 - 8x + 5
P = - ( x2 + 8x - 5 )
P = - ( x2 + 2 . 4 . x + 42 - 42 - 5 )
P = - [ ( x + 4 )2 - 21 ]
P = - ( x + 4 )2 + 21 \(\le\)21
Dấu " = " xảy ra \(\Leftrightarrow\)x + 4 = 0
\(\Rightarrow\)x = - 4
Vậy : Min P = 21 \(\Leftrightarrow\)x = - 4
Nhầm Max P = 21 \(\Leftrightarrow\)x = - 4 nhé . Thứ lỗi
P = -x2 - 8x + 5
P = -x2 - 8x - 16 + 21
P = -( x2 + 8x + 16 ) + 21
P = -( x + 4 )2 + 21
\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2+21\le21\)
Dấu " = " xảy ra <=> x + 4 = 0 => x = -4
Vậy PMax = 21, đạt được khi x = -4
. Giúp mình giải những bài trong Violympic nhé !
1. Giá trị của x để biểu thức B = 3 - x2 + 2x đạt giá trị lớn nhất .
2. Giá trị lớn nhất của biểu thức A = - 2x2+x-5 .
3. Giá trị của biểu thức 4x(x+1)-(1+2x)2-9 .
4. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
5. Giá trị rút gọn của biểu thức (2x-4)(x+3)-2x(x+1).
6. Giá trị nhỏ nhất của biểu thức 4x2-20x+40.
7. Giá trị của x để 3(2x+9)2-1 đạt giá trị nhỏ nhất.
8. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
9. Giá trị nhỏ nhất của biểu thức A = x(x+1)+3/2 .
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1 .
3−x2+2x3−x2+2x
=−(x2−2x−3)=−(x2−2x−3)
=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)
=−((x−1)2−4)=−((x−1)2−4)
=4−(x−1)2≤4=4−(x−1)2≤4
Vậy MAXB=4⇔x−1=0⇒x=1
2 .
A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98
=2(x−54)2−98=2(x−54)2−98
Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x
Vậy GTNN A = -9/8 <=> x = 5/4
3 .