Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thục khuê nguyễn
Xem chi tiết
Hân Giáp
Xem chi tiết
Tạ Uyên
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 19:24

\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow-3\le a+b+c\le3\)

\(T_{max}=3\) khi \(a=b=c=1\)

\(T_{min}=-3\) khi \(a=b=c=-1\)

Nguyễn Đức Duy
Xem chi tiết
Akai Haruma
22 tháng 4 2023 lúc 23:42

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+1\geq 2a$

$b^2+4\geq 4b$

$\Rightarrow a^2+b^2\geq 2a+4b-5$

$\Rightarrow P\geq 2a+4b-5+\frac{1}{a+b}+\frac{1}{b}$

$=\frac{a+b}{9}+\frac{1}{a+b}+(\frac{b}{4}+\frac{1}{b})+\frac{17}{9}a+\frac{131}{36}b-5$

$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}a+\frac{131}{36}b-5$

$=\frac{2}{3}+1+\frac{17}{9}a+\frac{131}{36}b-5$

$\geq \frac{2}{3}+1+\frac{17}{9}+\frac{131}{36}.2-5=\frac{35}{6}$

Vậy $P_{\min}=\frac{35}{6}$ khi $a=1; b=2$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 9 2019 lúc 6:49

Chọn đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 5 2019 lúc 2:25

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2017 lúc 10:27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2018 lúc 2:09

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 7 2017 lúc 7:30

Đáp án C