Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
qwerty
23 tháng 5 2017 lúc 11:36

Muốn chứng minh đường thẳng a // (P), ta chứng minh đường thẳng a song song với đường thẳng b mà đường thẳng b song song với mặt phẳng (P) (a và (P) không có điểm chung)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2018 lúc 1:57

Chứng minh đường thẳng song song với mặt phẳng

- Chứng minh d song song với đường thẳng d’ nằm trong (α) và d không thuộc(α).

- Có hai mặt phẳng song song, bất kì đường nào nằm trong hai mặt phẳng này cũng song song với mặt phẳng kia.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 16:13

Hình giải tích trong không gian

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 3 2017 lúc 14:51

Ta chọn hệ trục tọa độ sao cho các đỉnh của hình lập phương có tọa độ là:

A(0; 0; 0), B(1;0; 0), D(0; 1; 0)

B’(1; 0 ; 1), D’(0; 1; 1), C’ (1; 1; 1)

Phương trình của hai mặt phẳng (AB’D’) và (BC’D) là :

x + y – z = 0 và x + y – z – 1 = 0

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy (AB’D’) // (BC’D)

Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 17:53

Hỏi đáp Toán

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2018 lúc 4:37

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

Chọn hệ trục tọa độ Oxyz có gốc O ≡ A; Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ A(0; 0; 0) ; B(1; 0; 0); C(1; 1; 0); D(0; 1; 0).

A’(0; 0; 1); B’(1; 0; 1); C’(1; 1; 1); D’(0; 1; 1).

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ Vectơ pháp tuyến của (AB’D’) là:

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ Vectơ pháp tuyến của (BC’D) là:

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ (AB’D’) // (BC’D).

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:46

a)

loading...

Cho hai mặt phẳng \(\left( P \right),\left( Q \right)\) song song với nhau và đường thẳng \(a\) vuông góc với \(\left( P \right)\). Ta cần chứng minh \(a \bot \left( Q \right)\).

Trên \(\left( P \right)\) lấy hai đường thẳng \(b,c\) cắt nhau, trên \(\left( Q \right)\) lấy hai đường thẳng \(b',c'\) sao cho \(b'\parallel b,c'\parallel c\).

Vì \(b,c\) cắt nhau nên \(b',c'\) cắt nhau.

\(\begin{array}{l}\left. \begin{array}{l}a \bot \left( P \right) \Rightarrow a \bot b,a \bot c\\b\parallel b',c\parallel c'\end{array} \right\} \Rightarrow a \bot b',a \bot c'\\ \Rightarrow a \bot \left( Q \right)\end{array}\)

Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:46

b)

loading...

Cho hai mặt phẳng \(\left( P \right),\left( Q \right)\) cùng vuông góc với mặt phẳng \(\left( R \right)\). Ta cần chứng minh \(\left( P \right)\parallel \left( Q \right)\) hoặc \(d \bot \left( R \right)\) với \(d = \left( P \right) \cap \left( Q \right)\).

Vì \(\left( P \right) \bot \left( R \right)\) nên tồn tại đường thẳng \(a \subset \left( P \right)\) sao cho \(a \bot \left( R \right)\), \(\left( Q \right) \bot \left( R \right)\) nên tồn tại đường thẳng \(b \subset \left( Q \right)\) sao cho \(b \bot \left( R \right)\)

\( \Rightarrow a\parallel b\)

Vậy \(\left( P \right)\parallel \left( Q \right)\) hoặc nếu \(\left( P \right),\left( Q \right)\) cắt nhau theo giao tuyến \(d\) thì \(d\parallel a \Rightarrow d \bot \left( R \right)\).

Trần Rịa 01
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 6 2019 lúc 11:06

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Do ABCD là hình bình hành, nên AB // DC

=> AB // (Cz, Dt) (1)

Theo giả thiết Ax // Dt nên Ax // (Cz, Dt) (2)

Từ (1) và (2) suy ra: (Ax, By) // (Cz, Dt)

b) Mặt phẳng β cắt 2 mặt phẳng song song ( Ax, By), (Cz, Dt) theo hai giao tuyến là A’B’và C’D’ nên A’B’// C’D’. (3)

Chứng minh tương tự (Ax, Dt) song song với (By,Cz).Và mặt phẳng β cắt 2 mặt phẳng song song (Ax, Dt), (By, Cz) theo hai giao tuyến là A’D’và B’C’ nên A’D’// B’C’ (4)

Từ (3) và (4) suy ra: tứ giác A’B’C’D’ là hình bình hành.

=> J là trung điểm của A’C’ ( tính chất hình bình hành).

Tứ giác AA’C’C là hình thang vì có: AA’ // CC’ ( giả thiết). Lại có, I và J lần lượt là trung điểm của AC và A’C’ nên IJ là đường trung bình của hình thang

=> IJ// AA’// CC’ ( đpcm).

c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = 1/2(AA’ + CC’)

IJ cũng là đường trung bình của hình thang BDD’B’: IJ = 1/2(BB’ + DD’)

Từ đây suy ra: DD’ + BB’ = AA’ + CC’

=> DD’ = AA’ + CC’ – BB’ = a + c – b