Gọi x 0 là nghiệm của phương trình 3(x – 2) – 2x(x + 1) = 3 – 2 x 2 . Chọn khẳng định đúng.
A. x 0 là số nguyên âm
B. x 0 là số nguyên dương
C. x 0 không là số nguyên
D. x 0 là số vô tỉ
Gọi x 0 là nghiệm của phương trình 2.(x – 3) + 5x(x – 1) = 5 x 2 . Chọn khẳng định đúng.
A. x 0 > 0
B. x 0 < -2
C. x 0 > -2
D. x 0 > - 3
Cho các khẳng định sau:
(1) Phương trình |x – 3| = 1 chỉ có một nghiệm là x = 2
(2) Phương trình |x – 1| = 0 có 2 nghiệm phân biệt
(3) Phương trình |x – 3| = 1 có hai nghiệm phân biệt là x = 2 và x = 4
Số khẳng định đúng là:
A. 0
B. 1
C. 2
D. 3
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng
|x – 1| = 0 ó x – 1 = 0 ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.
Vậy có 1 khẳng định đúng
Đáp án cần chọn là: B
Trong các khẳng định sau, số khẳng định đúng là:
a) Tập nghiệm của phương trình x 2 + 3 x x = 0 là {0; 3}
b) Tập nghiệm của phương trình x 2 - 4 x - 2 = 0 là {-2}
c) Tập nghiệm của phương trình x - 8 x - 7 = 1 7 - x + 8 là {0}
A. 1
B. 2
C. 0
D. 3
Câu 1: [1] Gọi S là tập nghiệm của phương trình ( x+2)(2x-1)(x-3) = 0. Khẳng định nào sau đây sai?
A. -2 ∈ S B. 3 ∈ S C. 2 ∈ S D. \(\dfrac{1}{2}\) ∈ S
Ta có tập nghiệm của phương trình là:
\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Tập hợp S là:
\(S=\left\{-2;\dfrac{1}{2};3\right\}\)
Lần lược các phương án:
A. \(-2\in S\) (đúng)
B. \(3\in S\) (đúng)
C. \(2\in S\) (Sai)
D. \(\dfrac{1}{2}\in S\) (Đúng)
⇒ Chọn C
Các khẳng định sau đây đúng hay sai:
a. Phương trình 4 x - 8 + 4 - 2 x x 2 + 1 = 0 có nghiệm x = 2.
b. Phương trình x + 2 2 x - 1 - x - 2 x 2 - x + 1 = 0 có tập nghiệm S = {-2; 1}
c. Phương trình x 2 + 2 x + 1 x + 1 = 0 có nghiệm x = - 1
d. Phương trình x 2 x - 3 x = 0 có tập nghiệm S = {0; 3}
a. Đúng
Vì x 2 + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2
b. Đúng
Vì x 2 – x + 1 = x - 1 / 2 2 + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0
⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1
c. Sai
Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1
Do vậy phương trình không thể có nghiệm x = - 1
d. Sai
Vì điều kiện xác định của phương trình là x ≠ 0
Do vậy x = 0 không phải là nghiệm của phương trình
Cho các khẳng định sau:
(1) |x – 3| = 1 chỉ có một nghiệm là x = 2
(2) x = 4 là nghiệm của phương trình |x – 3| = 1
(3) |x – 3| = 1 có hai nghiệm là x = 2 và x = 4
Các khẳng định đúng là:
A. (1); (3)
B. (2); (3)
C. Chỉ (3)
D. Chỉ (2)
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4
Nên x = 4 là nghiệm của phương trình |x – 3| = 1
Khẳng định đúng là (2) và (3)
Đáp án cần chọn là: B
Gọi S1 là tập nghiệm của bất phương trình log 2 ( x + 5 ) + log 1 2 ( 3 - x ) ≥ 0 và S2 là tập nghiệm của bất phương trình log2(x + 1) ≥ 1. Khẳng định nào dưới đây đúng ?
A. S 1 ∩ S 2 = [ 1 ; 3 )
B. S 1 ∩ S 2 = [ - 1 ; 3 )
C. S 1 ∩ S 2 = - 1 ; 1
D. S 1 ∩ S 2 = 1 ; 3
Cho hệ phương trình - x + 2 y - 3 z = 2 6 x - y + 3 z = - 3 - 2 x - 3 y + z = 2
Giả sử (x; y;z) là nghiệm của hệ phương trình. Trong các khẳng định sau, khẳng định đúng là
Cho hai phương trình 3(x – 1) = -3 + 3x (1) và 2 - x 2 = x 2 + 2x – 6(x + 2) (2). Chọn khẳng định đúng
A. Phương trình (1) vô nghiệm, phương trình (2) có nghiệm duy nhất
B. Phương trình (1) vô số nghiệm, phương trình (2) có vô nghiệm
C. Phương trình (1) vô nghiệm, phương trình (2) có vô số nghiệm
D. Cả phương trình (1) và phương trình (2) đều có 1 nghiệm
Ta có
3(x – 1) = -3 + 3x
ó 3x – 3 = -3 + 3x
ó 3x – 3x = -3 + 3
ó 0x = 0
Điều này luôn đúng với mọi x thuộc R
Vậy phương trình đã cho vô số nghiệm
Lại có
2 - x 2 = x 2 + 2x – 6(x + 2)
ó 4 – 4x + x 2 = x 2 + 2x – 6x – 12
ó x 2 – x 2 – 4x – 2x + 6x + 4 + 12 = 0
ó 16 = 0 (vô lí)
Vậy phương trình đã cho vô nghiệm
Do đó (1) vô số nghiệm, (2) vô nghiệm
Đáp án cần chọn là: B