Xác định giá trị của tham số m để hệ phương trình m x − 2 y = 1 2 x − m y = 2 m 2 có nghiệm duy nhất
A. m ≠ 2
B. m ≠ −2
C. m = 2
D. m ≠ ± 2
cho hệ phương trình mx-y=2
3x+my=5( m là tham số)
xác định các giá trị của tham số m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x+y=3/m2+3
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-3\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\cdot\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{2m^2+5m}{m^2+3}-2=\dfrac{2m^2+5m-2m^2-6}{m^2+3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)
\(x+y=\dfrac{3}{m^2+3}\)
=>\(\dfrac{2m+5+5m-6}{m^2+3}=\dfrac{3}{m^2+3}\)
=>\(7m-1=3\)
=>7m=4
=>m=4/7(nhận)
Xác định giá trị của tham số m để hệ phương trình x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5 có nghiệm duy nhất.
A. m ≠ 0
B. m ≠ 2
C. m ≠ {0; 3}
D. m = 0; m = 3
Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5
⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2
TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2
Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau
TH2: Với m – 2 ≠ 0 ⇔ m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2
Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau
⇔ 1 m − 2 ≠ m − 1 2 ⇔ m – 1 m – 2 ≠ 2 ⇔ m 2 – 3 m + 2 ≠ 2 ⇔ m 2 – 3 m 0
Suy ra m ≠ {0; 2; 3}
Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}
Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}
Đáp án: C
Xác định giá trị của tham số m để hệ phương trình x + y = − 1 m x + y = 2 m vô nghiệm
A. m = 1
B. m = −1
C. m = 0
D. m = 1 2
Để hệ phương trình x + y = − 1 m x + y = 2 m vô nghiệm thì m 1 = 1 1 ≠ 2 m 1
⇔ m = 1 m ≠ 1 2 ⇒ m = 1
Đáp án: A
Xác định giá trị của tham số m để hệ phương trình 2 x − y = 4 ( m − 1 ) x + 2 y = m vô nghiệm
A. m = 1
B. m = −1
C. m = 3
D. m = −3
Ta có 2 x − y = 4 ( m − 1 ) x + 2 y = m
⇔ y = 2 x − 4 2 y = ( 1 − m ) x + m ⇔ y = 2 x − 4 y = 1 − m 2 x + m 2
Để hệ phương trình 2 x − y = 4 ( m − 1 ) x + 2 y = m vô nghiệm thì đường thẳng d: y = 2x – 4 song song với đường thẳng d’: y = 1 − m 2 x + m 2 suy ra
1 − m 2 = 2 m 2 ≠ − 4 ⇔ 1 − m = 4 m ≠ − 8 ⇔ m = − 3 m ≠ − 8 ⇔ m = − 3
Đáp án: D
Cho hệ phương trình: 3 m x + y = − 2 m − 3 x − m y = − 1 + 3 m . Xác định các giá trị của tham số m để hệ phương trình vô số nghiệm
A. m = 0
B. m = 1
C. m = 2
D. m = 3
Để hệ phương trình 3 m x + y = − 2 m − 3 x − m y = − 1 + 3 m có vô số nghiệm thì
3 m − 3 = 1 − m = − 2 m − 1 + 3 m ⇔ 3 m 2 = 3 2 m 2 = 3 m − 1 ⇔ m = ± 1 2 m 2 − 3 m + 1 = 0 ⇔ m = ± 1 2 m − 1 m − 1 = 0
⇔ m = ± 1 m = 1 m = 1 2 ⇒ m = 1
Đáp án: B
Cho hệ phương trình: 5 m x + 5 y = − 15 2 − 4 x − m y = 2 m + 1 . Xác định các giá trị của tham số m để hệ phương trình vô nghiệm.
A. m = 0
B. m = 2
C. m = −2
D. m = −3
+ TH1: Với m = 0 ta có hệ 5 y = − 15 − 4 x = 1 ⇔ y = − 3 x = − 1 4 hay hệ phương trình có nghiệm duy nhất nên loại m = 0
+ TH2: Với m = k + 0
Để hệ phương trình 5 m x + 5 y = − 15 2 − 4 x − m y = 2 m + 1 có vô số nghiệm thì
5 m − 4 = 5 − m = − 15 2 2 m + 1 ⇔ − 5 m 2 = − 20 10 2 m + 1 = 15 m ⇔ m 2 = 4 20 m + 10 = 15 m
⇔ m = 2 m = − 2 m = − 2 ⇒ m = − 2 T M
Đáp án: C
Cho hệ phương trình ( x+y = 2 mx−y = m với m là tham số.
a) Giải hệ phương trình khi m = −2.
b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) sao cho 3x−y = −10.
c) Tìm giá trị nguyên của m để hệ phương trình có nghiệm (x; y) mà x, y là những số nguyên
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....
Cho hệ phương trình \(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\)
Xác định giá trị của m để nghiệm (x;y) của hệ phương trình thoả điều kiện x+y=0
\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m\left(mx-2\right)=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m^2x-2m=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+1\right)=3+2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m.\dfrac{3+2m}{m^2+1}-2\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m+2m^2-2m^2-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)
\(x+y=0\\ \Leftrightarrow\dfrac{3m-2}{m^2+1}+\dfrac{3+2m}{m^2+1}=0\\ \Leftrightarrow\dfrac{3m-2+3+2m}{m^2+1}=0\\ \Rightarrow4m+1=0\\ \Leftrightarrow m=-\dfrac{1}{4}\)
x+y=0 \(\Rightarrow\) y=-x.
\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}mx+x=2\\x-mx=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x\left(m+1\right)=2\\x\left(1-m\right)=3\end{matrix}\right.\) \(\Rightarrow\) \(\dfrac{2}{m+1}=\dfrac{3}{1-m}\) \(\Rightarrow\) m=-1/5 (nhận).
Cho hệ phương trình \(\left\{{}\begin{matrix}2x+y=3m-5\\x-y=2\end{matrix}\right.\)(m là tham số)
a, giải hệ phương trình với m=2
b, gọi nghiệm của hệ là (x;y), tìm giá trị của m để x2+y2 đạt giá trị nhỏ nhất
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...