Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Sơn
Xem chi tiết
nothing
Xem chi tiết
Nguyễn Ngọc Anh Minh
10 tháng 3 2021 lúc 8:34

Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)

\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)

\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp

Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48

Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2

\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)

Ta thấy \(B⋮2;B⋮8\)

(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)

\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)

\(\Rightarrow A⋮48\)

Khách vãng lai đã xóa
Vinh Ngo
Xem chi tiết
Nguyễn Tấn Phát
15 tháng 5 2019 lúc 22:28

Chứng minh gì z bạn?????

Tran Thi Hang
Xem chi tiết
Minh Triều
19 tháng 7 2015 lúc 13:29

a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

ta có:

(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8

b) gọi số lẽ đó là 2k+1

ta có:

(2k+1)2-1=(2k+1-1)(2k+1+1)

=2k.(2k+2)

=4k2+4k

Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2 

=>4k2+4k chia hết cho 8

Vậy  Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8

trần bảo an
19 tháng 7 2015 lúc 13:13

de thi lam di 

noi vay toi cung noi duoc

 

Minh Triều
19 tháng 7 2015 lúc 13:17

thang Tran làm ik tớ ko làm

Huy Hoàng
Xem chi tiết
Đừng hỏi tên tớ vì tớ cũ...
12 tháng 11 2016 lúc 20:53

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

Lê Thị Thu Hằng
23 tháng 11 2016 lúc 10:18

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.tích của 3 số nguyên liên tiếp chia hết cho 3.tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

(a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

pham ngoc yen nhi
9 tháng 10 2019 lúc 22:43

sao dài yữ vậy trời???????????????????????????????????????

Trần Trung Hiếu
Xem chi tiết
Nguyễn Tấn Phát
15 tháng 5 2019 lúc 22:28

Ta có: \(ab-a-b+1=\left(ab-a\right)-\left(b-1\right)=a\left(b-1\right)-\left(b-1\right)=\left(a-1\right)\left(b-1\right)\)

Mà a,b là hai số chính phương lẻ liên tiếp

\(\Rightarrow\hept{\begin{cases}a=\left(2k-1\right)^2\\b=\left(2k+1\right)^2\end{cases}}\)

Đặt \(A=\left(a-1\right)\left(b-1\right)=\left[\left(2k-1\right)^2-1\right]\left[\left(2k+1\right)^2-1\right]\)

\(=\left(4k^2-4k\right)\left(4k^2+4k\right)\)

\(=16k^4-16k^2\)

\(=16k^2\left(k^2-1\right)\)

\(=16k\left(k-1\right)k\left(k+1\right)\)

Ta có: \(A⋮16\Rightarrow A⋮4\)

Mà \(\left(k-1\right)k\left(k+1\right)\)là tích 3 số tự nhiên liên tiếp

\(\Rightarrow A⋮3\)

\(\Rightarrow A⋮192\left(48=16.4.3\right)\)

Heartilia Hương Trần
Xem chi tiết
Nguyễn Hải Dương
23 tháng 11 2016 lúc 17:31

1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017

= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)

= 1 + 0 + 0 + 0 + .........+ 0

= 1

Nguyễn Hải Dương
24 tháng 11 2016 lúc 10:45

Giả sử a là số nguyên tố chia 12 dư 9

=> a = 12k + 9 ( k \(\in\)N* )

= 3(4k + 3 ) chia hết cho 3

=> a chia hết cho 3. Mà a là số nguyên tố

=> a = 3

Mà 3 chia 12 dư 3

=> Điều giả sử trên là sai !

Vậy không có số nguyên tố nào chia 12 dư 9

Nguyễn Thị Phương Hoa
Xem chi tiết
Một Khi Đã Máu Thì Đừng...
14 tháng 2 2016 lúc 13:56

bài khó quá ,tik thì mới làm đc

Lê Bảo Châu
Xem chi tiết
Thành Dương
19 tháng 7 2021 lúc 20:47

bài 2 :

   x3+7y=y3+7x

   x3-y3-7x+7x=0

   (x-y)(x2+xy+y2)-7(x-y)=0

   (x-y)(x2+xy+y2-7)=0

    \(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)

   x2+xy+y2=7 (*)

   Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)