Tập giá trị của hàm số y = sin 2 x + 3 cos 2 x + 1 là đoạn a ; b . Tính tổng T = a + b ?
A. T = 0
B. T = 1
C. T = 2
D. T = -1
Tìm tập giá trị của các hàm số sau:
a) \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1;\)
b) \(y = \sin x + \cos x\).
a) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)
\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \sin x \le 1,\;\; - 1 \le \cos \alpha \le 1\;\; \Leftrightarrow - 2 \le \sin x + \cos x \le 2\)
\( \Rightarrow \) Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - 2;2} \right]\).
Tìm min, max và tập giá trị của hàm số:
1, y = 3sin(2x + \(\frac{\pi}{4}\) ) - 1
2, y = -5\(cos^2\) x + 3
3, y = \(\frac{5}{3\cos x+4}\)
4, y = \(\sin^2\)x - 4sinx + 8
1: Ta có: \(-1<=\sin\left(2x+\frac{\pi}{4}\right)\le1\)
=>\(-3\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)\le3\)
=>\(-3-1\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)-1\le3-1\)
=>-4<=y<=2
=>Tập giá trị là T=[-4;2]
\(y_{\min}=-4\) khi \(\sin\left(2x+\frac{\pi}{4}\right)=-1\)
=>\(2x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\)
=>\(2x=-\frac34\pi+k2\pi\)
=>\(x=-\frac38\pi+k\pi\)
2: \(0\le cos^2x\le1\)
=>\(0\ge-5\cdot cos^2x\ge-5\)
=>\(0+3\ge-5\cdot cos^2x+3\ge-5+3\)
=>3>=y>=-2
=>Tập giá trị là T=[-2;3]
\(y_{\max}=3\) khi \(cos^2x=1\)
=>\(\sin^2x=0\)
=>sin x=0
=>\(x=k\pi\)
\(y_{\min}=-2\) khi \(cos^2x=0\)
=>cosx=0
=>\(x=\frac{k\pi}{2}\)
3: \(-1\le cosx\le1\)
=>\(-3\le3\cdot cosx\le3\)
=>\(-3+4\le3\cdot cosx+4\le3+4\)
=>\(1\le3\cdot cosx+4\le7\)
=>\(\frac51\ge\frac{5}{3\cdot cosx+4}\ge\frac57\)
=>\(\frac57\le y\le5\)
=>Tập giá trị là \(T=\left\lbrack\frac57;5\right\rbrack\)
\(y_{\min}=\frac57\) khi cosx=1
=>\(x=k2\pi\)
\(y_{\max}=5\) khi cosx=-1
=>\(x=\pi+k2\pi\)
4: \(y=\sin^2x-4\cdot\sin x+8\)
\(=\sin^2x-4\cdot\sin x+4+4\)
\(=\left(\sin x-2\right)^2+4\)
Ta có: \(-1\le\sin x\le1\)
=>\(-1-2\le\sin x-2\le1-2\)
=>\(-3\le\sin x-2\le-1\)
=>\(1\le\left(\sin x-2\right)^2\le9\)
=>\(5\le\left(\sin x-2\right)^2+4\le13\)
=>5<=y<=13
=>Tập giá trị là T=[5;13]
\(y_{\min}=5\) khi sin x-2=-1
=>sin x=1
=>\(x=\frac{\pi}{2}+k2\pi\)
\(y_{\max}\) =13 khi sin x-2=-3
=>sin x=-1
=>\(x=-\frac{\pi}{2}+k2\pi\)
Tìm tập giá trị của các hàm số sau:
a) \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) \(y = \sqrt {1 + \cos x} - 2\);
a) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1 \Rightarrow - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\; \Rightarrow - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\)
\( \Rightarrow - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\)
Vây tập giá trị của hàm số \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \cos x \le 1 \Rightarrow 0 \le 1 + \cos x \le 2 \Rightarrow 0 \le \sqrt {1 + \cos x} \le \sqrt 2 \;\; \Rightarrow - 2 \le \sqrt {1 + \cos x} - 2 \le \sqrt 2 - 2\)
Vậy tập giá trị của hàm số \(y = \sqrt {1 + \cos x} - 2\) là \(T = \left[ { - 2;\sqrt 2 - 2} \right]\)
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
Tập giá trị của hàm số y = sin 2 x + 3 cos 2 x + 1 là đoạn [a;b]. Tính tổng T=a+b?
A.T=1
B.T=2
C.T=0
D.T=-1
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 2 là
A. m = - 1 2 ; M = 1
B. m = 1 ; M = 2
C. m = - 2 ; M = 1
D. m = - ; M = 2
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 2 là
![]()
![]()
![]()
![]()
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = cos x + 2 . sin x + 3 2 . cos x - sin x + 4 . Tính M,m
A. 4/11
B. 3/4
C. 1/2
D. 20/11
Tìm giá trị max, min của các hàm số sau:
1, y= 2 - \(\sin\left(\dfrac{3\pi}{2}+x\right)\cos\left(\dfrac{\pi}{2}+x\right)\)
2, y= \(\sqrt{5-2\sin^2x.\cos^2x}\)
1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)
\(y=2-\left(-cosx\right).\left(-sinx\right)\)
y = 2 - sinx.cosx
y = \(2-\dfrac{1}{2}sin2x\)
Max = 2 + \(\dfrac{1}{2}\) = 2,5
Min = \(2-\dfrac{1}{2}\) = 1,5
2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)
Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)
Max = \(\sqrt{5}\)
Tập giá trị của hàm số y = cos x + 2 sin x + 3 2 cos x - sin x + 4 có bao nhiêu giá trị nguyên?
A. 1
B. 2
C. 3
D. Vô số
Chọn đáp án B

Vậy tập giá trị của hàm số đã cho có 2 giá trị nguyên.
