Cho số phức z = a + b i với a , b ∈ ℝ . Môđun của z tính bằng công thức nào sau đây?
A. z = a + b
B. z = a + b
C. z = a 2 + b 2
D. z = a 2 + b 2
Cho số phức z = a + bi với a , b ∈ ℝ . Môđun của z tính bằng công thức nào sau đây?
Cho số phức z = a + b i với a , b ∈ ℝ . Môđun của z tính bằng công thức nào sau đây?
A. z = a + b .
B. z = a + b .
C. z = a 2 + b 2 .
D. z = a 2 + b 2 .
Cho số phức z = a + b i a , b ∈ ℝ . Môdun của z được tính theo công thức nào sau đây?
A. |z| = a + b
B. z = a 2 + b 2
C. z = a − b
D. z = a 2 + b 2
Cho số phức z = a + bi(a,b ϵ ℝ) thỏa mãn a + b - i t = 1 + 3 i 1 - 2 i Giá tri nào dưới đây là môđun của z?
A. 5
B. 1
C. 10
D. 5
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z - 2 i z - 2 là số thuần ảo. Khi số phức z có môđun lớn nhất. Tính giá trị biểu thức P = a + b
A. P = 0 .
B. P = 4 .
C. P = 2 2 + 1 .
D. P = 1 + 3 2 .
Số phức z = a + b i a , b ∈ ℝ là số phức có môđun nhỏ nhất trong tất cả các số phức thỏa điều kiện z + 3 i = z + 2 − i , khi đó giá trị z . z ¯ bằng
A. 1 5
B. 5
C. 3
D. 3 25
Đáp án A
Gọi z = a + b i , khi đó z + 3 i = z + 2 − i
⇔ a 2 + b + 3 2 = a + 2 2 + b − 1 2
⇔ 4 a − 8 b = 4 ⇔ a = 1 + 2 b
Ta có: a 2 + b 2 = 1 + 2 b 2 + b 2 = 5 b 2 + 4 b + 1
= 5 b + 2 5 2 + 1 5 ≥ 1 5 ⇒ z . z ¯ = a 2 + b 2 = 1 5
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z = a + bi(a,b ∈ℝ) thỏa mãn a + (b-1)i = 1 + 3 i 1 - 2 i . Giá trị nào dưới đây là mô đun của z?
A. 5.
B. 1.
C. 10
D. 5
Cho số phức z thỏa mãn z + 3 i + z - 3 i = 10 . Gọi M 1 ; M 2 lần lượt là điểm biểu diễn số phức z có môđun lớn nhất và nhỏ nhất. Gọi M là trung điểm của M 1 M 2 , M(a, b) biểu diễn số phức w, tổng a + b nhận giá trị nào sau đây?
A. 7 2
B. 5
C. 4
D. 9 2