Cho tứ diện ABCD có AB = CD = 5 , AC = BD = 10 , AD = BC = 13 . Tính thể tích tứ diện đã cho
A . 5 26
B . 5 26 6
C. 4
D. 2
Cho tứ diện ABCD có AB=CD= 5 , AC=BD= 10 ,AD=BC= 13 Tính thể tích tứ diện đã cho
A. 5 26
B. 5 26 6
C. 4
D. 2
Cho tứ diện ABCD có AB=CD=3, AD=BC=5, AC=BD=6. Tính thể tích khối cầu ngoại tiếp tứ diện ABCD.
Cho tứ diện ABCD có A B = a 2 , A C = A D = a , B C = B D = a , C D = a . Tính thể tích V của khối tứ diện ABCD.
A. V = a 3 2 12
B. V = a 3 6 8
C. V = a 3 6 24
D. V = a 3 2 4
Chọn A
Gọi H là hình chiếu vuông góc của A trên (BCD). Khi đó CD vuông góc với mp(ABH).
Thể tích tứ diện ABCD gấp đôi thể tích của tứ diện ABCE, với E là trung điểm CD.
Cách khác: Gọi I là trung điểm AB.
Dễ thấy IACD và IBCD là các tứ diện vuông tại I, có các cạnh góc vuông là a 2
Cho tứ diện ABCD có A B = a 2 , AC=AD=a, BC=BD=a, CD=a. Tính thể tích V của khối tứ diện ABCD.
Cho tứ diện ABCD có A B = C D = 11 m ; B C = A D = 20 m ; B D = A C = 21 m . Tính thể tích khối tứ diện ABCD.
A. 770 m 3
B. 340 m 3
C. 720 m 3
D. 360 m 3
Phương pháp:
Dựng hình hộp chữ nhật AMCN.PBQD sao cho các đường chéo A B = C D = 11 m ; B C = A D = 20 m ; B D = A C = 21 m
Từ đó ta phân chia thể tích các hình chóp nhỏ trong hình hộp chữ nhật để tính được V A B C D theo thể tích hình hộp chữ nhật.
Dựa vào định lý Pytago để tính các kích thước của hình hộp chữ nhật từ đó suy ra thể tích V A B C D
Cách giải:
Dựng hình hộp chữ nhật AMCN.PBQD như hình bên. Khi đó
Tứ diện ABCD thỏa mãn A B = C D = 11 m ; B C = A D = 20 m ; B D = A C = 21 m
Gọi các kích thước hình hộp chữ nhật là m; n; p. Gọi
Cho tứ diện ABCD có các cạnh A D = B C = 3 , A C = B D = 4 ; A B = C D = 2 3 . Thể tích tứ diện ABCD bằng:
A. 2740 12
B. 2047 12
C. 2074 12
D. 2470 12
Cho tứ diện ABCD có AB=BC=CD=2, AC=BD=1, AD= 3 . Tính bán kính của mặt cầu ngoại tiếp tứ diện đã cho.
Cho tứ diện ABCD có AB = BC = CD = 2, AC = BD = 1, AD = 3 . Tính bán kính của mặt cầu ngoại tiếp tứ diện đã cho.
Cho tứ diện ABCD có AB=AC=AD=2a. Biết tam giác BCD có BC=2a, BD=a, C B D ^ = 120 ° . Tính thể tích tứ diện ABCD theo a