Cho tứ diện ABCD có BC = CD = BD = 2a, AC = AD = 2 , AB = a. Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là:
A. 90 o .
B. 60 o .
C. 45 o
D. 30 o
Cho tứ diện ABCD có B C = C D = B D = 2 a , A C = A D = a 2 , A B = a . Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là:
A. 90 °
B. 60 °
C. 45 °
D. 30 °
Cho tứ diện ABCD có B C = C D = B D = 2 a , A C = a 2 , A B = a . Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là
A. 90o.
B. 60o.
C. 45o.
D. 30o.
Cho tứ diện ABCD có AB = AD = a 2 , BC = BD = a và CA = CD = x. Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là:
A.600
B.450
C.900
D.1200
Chọn C
Gọi H là trung điểm cạnh CD và K là trung điểm cạnh AD.
Tam giác ACD có CA=CD=x=a ; AD = a 2 => tam giác ACD vuông cân tại C
Mặt khác:
Tam giác ABD có:
Tam giác BHK có:
=> Tam giác BHK vuông tại H ⇒ B H K ^ = 90 o hay A C D , B C D ^ = 90 o
Cho tứ diện ABCD có A B = A D = a 2 , B C = B D = a và C A = C D = x . Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là
A. 60 0 .
B. 45 0 .
C. 90 0 .
D. 120 0 .
Đáp án C
Gọi h là khoảng cách từ B → A C D
⇒ h = a 3 2 ⇒ S Δ A C D = 3 V A B C D h = 3 a 3 3 12 a 3 2 = a 2 2
Gọi M là trung điểm AD ⇒ C M ⊥ A D .
⇒ C M = 2 S A C D A D = 2. a 2 2 a 2 = a 2 2 = 1 2 A D
⇒ Δ A C D vuông tại C ⇒ C A = C D = a
Δ C A D = Δ C B A C . C . C ⇒ A C D ^ = A C B ^ = 90 0
⇒ A C ⊥ C D A C ⊥ C B ⇒ A C ⊥ B C D ⇒ A C D ⊥ B C D
Hay góc giữa hai mặt phẳng bằng 90 0
Cho tứ diện ABCD có AB=AD= a 2 , BC=BD=a, CA=CD=x. Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là
A. 60 o
B. 45 o
C. 90 o
D. 120 o
Cho tứ diện ABCD có AB=BC=AC=BD=2a, AD= a 3 ; hai mặt phẳng (ACD) và (BCD) vuông góc với nhau. Diện tích mặt cầu ngoại tiếp tứ diện ABCD bằng
Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Chứng minh: Góc giữa hai mặt phẳng (ACD) và (BCD) là A I B ^
+) Tam giác BCD có BC = BD nên tam giác BCD cân tại B.
- Do BI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ BI (1)
+) Tam giác ACD có AC = AD nên tam giác ACD cân tại A.
- Do AI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ AI (2)
- Từ (1) và (2) ⇒ CD ⊥ (ABI).
- Ta có:
- Suy ra góc giữa hai mặt phẳng (ACD) và (BCD) là
.
Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x . Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
A. a 2 3
B. a 3 3
C. a 3 2
D. a 5 3
Phương pháp:
Xác định góc giữa hai mặt phẳng
- Tìm giao tuyến
- Xác định 1 mặt phẳng
- Tìm các giao tuyến
- Góc giữa hai mặt phẳng
Cách giải:
Gọi M là trung điểm của CD.
Do tam giác ACD và BCD là các tam giác cân tại A, B
và
Dễ dàng chứng minh được tại I
suy ra
Lại có:
Từ (1), (2) suy ra:
Chọn: B
Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng 60 o . Gọi M và N lần lượt là trung điểm của AB và CD.
Góc giữa hai mặt phẳng (ACD) và (BCD) là:
A. A C B ⏜
B. A N B ⏜
C. A D B ⏜
D. M N B ⏜
Các tam giác ABC và ABD là tam giác đều ⇒ tam giác ACD cân
⇒ BN ⊥ CD và AN ⊥ CD ⇒ góc ANB là góc của hai mặt phẳng (ACD) và (BCD)
Đáp án B