Trong không gian toạ độ Oxyz, cho hai điểm A(0;1;-1) và B(1;0;2). Đường thẳng AB có phương trình chính tắc là:
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-2;0),B(-2;4;-2). Toạ độ trung điểm của đoạn thẳng AB là
A. (0;2;-2).
B. (0;4;-4).
C. (0;1;-1).
D. (-4;6;-2).
Trong không gian Oxyz, cho hai điểm A ( 2 ; 1 ; 3 ) , B ( 0 ; 3 ; 1 ) . Trung điểm của AB có toạ độ là
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz sao cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0).
Chọn C
Gọi I là trung điểm của
Ta có:
IA²+IB² không đổi nên MA²+MB² đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
=> M là hình chiếu của I trên trục Oz.
=> M (0;0;3).
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz so cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0)
Chọn C
IA²+IB² không đổi nên MA²+MB² đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
Suy ra M là hình chiếu của I trên trục Oz.
Suy ra M (0;0;3).
Trong không gian Oxyz, cho hai điểm A(1;−2;1), B(0;1;−3). Toạ độ véctơ A B ⇀ là
A. (1;-3;4)
B. (1;-1;2)
C. (-1;3;-4)
D. (-1;1;2)
Trong không gian với hệ trục toạ độ Oxyz, cho hai điểm A(-1;3;4), B(9;-7;2). Tìm trên trục Ox toạ độ điểm M sao cho M A 2 + M B 2 đạt giá trị nhỏ nhất
A. M(5;0;0)
B. M(-2;0;0)
C. M(4;0;0)
D. M(9;0;0)
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng P : 6 x + 3 y - 2 z + 24 = 0 và điểm A(2;5;1). Tìm toạ độ hình chiếu vuông góc H của A trên (P).
A. H(4;2;3)
B. H(4;2;-3)
C. H(4;-2;3)
D. H(-4;2;3)
Đáp án D.
Mặt phẳng (P) có 1 vecto pháp tuyến n → = ( 6 ; 3 ; - 2 )
Đường thẳng AH qua A và vuông góc vưới (P)
Suy ra phương trình của đường thẳng AH là
Suy ra H(2+6t; 5+3t; 1-2t)
Mà
Vậy H(-4;2;3)
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng P : 6 x + 3 y - 2 z + 24 = 0 và điểm A(2;5;1). Tìm toạ độ hình chiếu vuông góc H của A trên (P).
A. H(4;2;3)
B. H(4;2;-3)
C. H(4;-2;3)
D. H(-4;2;3)
Đáp án D.
Mặt phẳng (P) có 1 vecto pháp tuyến n → = ( 6 ; 3 ; - 2 )
Đường thẳng AH qua A và vuông góc vưới (P)
Suy ra phương trình của đường thẳng AH là
Suy ra H(2+6t; 5+3t; 1-2t)
Mà
Vậy H(-4;2;3)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục ?z sao cho MA2 + MB2 đạt giá trị nhỏ nhất.
A. M (0; 0; 49)
B. M (0; 0; 67)
C. M (0; 0 ;3)
D. M (0; 0; 0)
Chọn C
Gọi I là trung điểm của AB
Suy ra: MA2 + MB2 đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
=>M là hình chiếu của I trên trục Oz => M (0 ; 0 ; 3)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục Oz sao cho M A 2 + M B 2 đạt giá trị nhỏ nhất.
A. M (0; 0; 49).
B. M (0; 0; 67)
C. M (0; 0 ;3)
D. M (0; 0; 0)