Tổng tất cả các nghiệm của phương trình 2 - 1 x + 2 + 1 x - 6 = 0 là
A.0
B. 5 2
C.6
D.1
Câu 1: Tính tổng tất cả các nghiệm của phương trình sin3(\(x-\dfrac{\pi}{4}\)) = \(\sqrt{2}\)sinx trên đoạn [0 ; 2018]
Câu 2: Tính tổng tất cả các nghiệm của phương trình cos2x (tan2x - cos2x) = cos3x - cos2x + 1 trên đoạn [0 ; 43π]
GIÚP MÌNH VỚI!!!
Bài 1 tổng tất cả các nghiệm của phương trình sinx/cosx-1=0 trong đoạn [0;4π]
Bài 2 số vị trí biểu diễn tất cả các nghiệm của phương trình cos2x.tan x=0 trên đường tròn lượng giác là
Tổng tất cả các nghiệm của phương trình 2 2 x + 1 - 5 . 2 x x + 2 = 0 bằng
A. 0
B. 5 2
C. 1
D. 2
Tổng tất cả các nghiệm của phương trình 4 x 2 + 3 x - 2 = 1 + x là:
A. 3
B. -3
C. -2
D. 1
Tổng tất cả các nghiệm của phương trình 2 2 x + 1 - 5 . 2 x + 2 = 0 bằng
A. 0
B. 5/2
C. 1
D. 2
Cho phương trình 2 x 3 x 2 - x + 2 - 7 x 3 x 2 + 5 x + 2 (1). Gọi S là tổng tất cả các nghiệm của phương trình (1). Giá trị của S là:
A. S = −11
B. S = 11
C. S = - 11 2
D. S = 11 2
Cho phương trình 2 cos 2 x cos 2 x − cos 2018 π 2 x = cos 4 x − 1 . Tính tổng tất cả các nghiệm thực dương của phương trình.
A. π
B. 1010 π
C. 1001 π
D. 1100 π
Đáp án B.
Điều kiện: x ≠ 0 .
Ta có 2 cos 2 x cos 2 x − cos 2018 π 2 x = cos 4 x − 1
⇔ 2 cos 2 2 x − 2 cos 2 x . cos 2018 π 2 x = cos 4 x − 1
⇔ cos 4 x + 1 − 2 cos 2 x . cos 2018 π 2 x = cos 4 x − 1
⇔ cos 2 x . cos 2018 π 2 x = 1
ta có cos 2 x . cos 2018 π 2 x ≤ 1
do đó cos 2 x . cos 2018 π 2 x = 1 ⇔ cos 2 x = 1 cos 2018 π 2 x = 1 hoặc cos 2 x = − 1 cos 2018 π 2 x = − 1
cos 2 x = 1 cos 2018 π 2 x = 1 ⇔ x = k π x = 1009 π l k , l ∈ ℤ
⇒ k l = 1009 ⇒ k = 1009 l = 1 hoặc k = − 1009 l = − 1 hoặc k = 1 l = 1009 hoặc k = − 1 l = − 1009
Trong trường hợp này tổng các nghiệm dương của phương trình bằng 1010 π
cos 2 x = − 1 cos 2018 π 2 x = − 1 ⇔ x = π 2 + k π x = 2018 π 1 + 2 l k , l ∈ ℤ
⇒ 1 2 + k = 2018 1 + 2 l ⇒ 1 + 2 k 1 + 2 l = 2.2018 (*)
Vế trái của (*) là số lẻ, vế phải của (*) là số chẵn. Do đó không có giá trị nguyên nào của k, l thỏa mãn (*).
* Tóm lại: Tổng các nghiệm dương của phương trình bằng 1010π.
Tổng tất cả các nghiệm của phương trình log 2 3.2 x − 1 = 2 x + 1 bằng
A. 1 2
B. 3 2
C. -1
D. 0
Tổng tất cả các nghiệm của phương trình log 2 3 . 2 x - 1 = 2 x + 1 bằng
A. 3 2
B. 1 2
C. - 1
D. 0
Tổng tất cả các nghiệm nguyên của bất phương trình \(2log_{2}\sqrt{x+1}\leq2- log_{2}(x-2) \)