Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho phương trình 2 cos 2 x cos 2 x − cos 2018 π 2 x = cos 4 x − 1 . Tính tổng tất cả các nghiệm thực dương của phương trình.

A. π

B. 1010 π

C. 1001 π

D. 1100 π

Cao Minh Tâm
26 tháng 8 2019 lúc 12:37

Đáp án B.

Điều kiện:  x ≠ 0   .

Ta có  2 cos 2 x cos 2 x − cos 2018 π 2 x = cos 4 x − 1

⇔ 2 cos 2 2 x − 2 cos 2 x . cos 2018 π 2 x = cos 4 x − 1

⇔ cos 4 x + 1 − 2 cos 2 x . cos 2018 π 2 x = cos 4 x − 1

⇔ cos 2 x . cos 2018 π 2 x = 1  

ta có  cos 2 x . cos 2018 π 2 x ≤ 1  

do đó  cos 2 x . cos 2018 π 2 x = 1 ⇔ cos 2 x = 1 cos 2018 π 2 x = 1 hoặc  cos 2 x = − 1 cos 2018 π 2 x = − 1

cos 2 x = 1 cos 2018 π 2 x = 1 ⇔ x = k π x = 1009 π l k , l ∈ ℤ

⇒ k l = 1009 ⇒ k = 1009 l = 1 hoặc  k = − 1009 l = − 1 hoặc k = 1 l = 1009 hoặc  k = − 1 l = − 1009

Trong trường hợp này tổng các nghiệm dương của phương trình bằng  1010 π

cos 2 x = − 1 cos 2018 π 2 x = − 1 ⇔ x = π 2 + k π x = 2018 π 1 + 2 l k , l ∈ ℤ

⇒ 1 2 + k = 2018 1 + 2 l ⇒ 1 + 2 k 1 + 2 l = 2.2018 (*)

Vế trái của (*) là số lẻ, vế phải của (*) là số chẵn. Do đó không có giá trị nguyên nào của k, l thỏa mãn (*).

* Tóm lại: Tổng các nghiệm dương của phương trình bằng 1010π.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết