Cho số phức z = ( 1 + i ) 2 ( 1 + 2 i ) .Số phức z có phần ảo là
A. 2
B. 4
C. -2
D. 2i
Cho số phức z thỏa mãn (1+z)(1+i)-5+i=0. Số phức w=1+z bằng
A. -1+3i.
B. 1-3i.
C. -2+3i.
D. 2-3i
Cho số phức z, biết ( 2 z - 1 ) ( 1 + i ) + ( z ¯ + 1 ) ( 1 - i ) = 2 - 2 i .
Tìm số phức liên hợp của số phức w=3z-3i
A. 1 3 - 1 3 i
B. 1 3 + 1 3 i
C. 1 - 4 i
D. 1 + 4 i
Chọn D.
Giả sử z=a+bi với a,b ∈ ℝ
Thay vào biểu thức ta được:
Cho số phức z = 1+ ( 1+ i) + ( 1+i) 2+ ...+ (1+ i) 26 . Phần thực của số phức z là
A. 2 13
B. - 1 + 2 13
C. - 2 13
D. 1 + 2 13
Chọn A. Số phức z là tổng của cấp số nhân với số hạng đầu là 1 và công bội q = 1 + i. Do đó:
Vậy phần thực là: 213
Cho số phức z thỏa mãn
z
(
1
-
2
i
)
+
z
¯
i
=
15
+
i
Tìm môđun của số phức z.
A. z = 5
B. z = 4
C. z = 2 5
D. z = 2 3
Đáp án A
Phương pháp
Gọi
Sử dụng định nghĩa hai số phức bằng nhau.
Cách giải
Cho số phức z = (2+i)(1-i) + 1 +2i. Mô-đun của số phức z là
A. 2 2
B. 4 2
C. 17
D. 2 5
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z = 3 + i. Điểm biểu diễn số phức 1/z trong mặt phẳng phức là:
A.
B.
C.
D.
Cho số phức z = 3+ i. Điểm biểu diễn số phức 1/z trong mặt phẳng phức là:
A.
B.
C.
D.
Chọn A.
Ta có :
Do đó điểm biểu diễn số phức 1/z trong mặt phẳng phức là:
Cho số phức z=1-i. Tính môđun của số phức w = z - - 2 i z - 1
A. w = 2
B. w = 1
C. w = 2
D. w = 3
Cho số phức z = 1 − i . Tính môđun của số phức w = z ¯ − 2 i z − 1 .
A. w = 2
B. w = 1
C. w = 2
D. w = 3