Gọi S là tập hợp số nguyên dương k thỏa mãn điều kiện: ∫ 1 e ln k x d x < e - 2 . Số phần tử của tập S là
A. 2
B. 1
C. 3
D. 0
Gọi S là tập hợp số nguyên dương k thỏa mãn điều kiện: ∫ 1 e ln k x d x < e - 2 . Số phần tử của tập S là
A. 2
B. 1
C. 3
D. 0
Cho hàm số y = ln ( 2 x - a ) - 2 m ln ( 2 x - a ) + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + . . . + log . . . 2 ( x 2 + a 2 ) - ( 2 n + 1 - 1 ) ( log 2 x a + 1 ) = 0
(với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thoả mãn m a x [ 1 ; e 2 ] y = 1 . Số phần tử của S là
A. 0
B. 1
C. 2
D. Vô số
Viết tập hợp tất cả các số nguyên x thỏa mãn điều kiện − 3 ≤ x < 1
Viết tập hợp tất cả các số nguyên x thỏa mãn điều kiện: − 3 < x < 1
Cho 2 số \(n,k\inℤ^+\) và S là tập hợp \(n\) điểm trên mặt phẳng thỏa mãn các điều kiện sau:
1. Không có 3 điểm nào trong S thẳng hàng.
2. Với mọi điểm P thuộc tập S, tồn tại ít nhất \(k\) điểm khác trong S cách đều P.
Chứng minh rằng \(k< \dfrac{1}{2}+\sqrt{2n}\)
Gọi x, y là các số thực dương thỏa mãn điều kiện log 9 x = log 6 y = log 4 ( x + y ) và x y = - a + b 2 , với a, b là hai số nguyên dương. Tính a.b.
Gọi x,y là các số thực dương thỏa mãn điều kiện l o g 9 x = l o g 6 y = l o g 4 ( x + y ) và x y = - a + b 2 , với a,b là hai số nguyên dương. Tính a.b
A. a.b=5
B. a.b=1
C. a.b=8
D. a.b=4
Gọi S là tập hợp các giá trị nguyên dương của m thỏa mãn để x^2 - 2x - m 0. Số phần tử là :
A. 1
B.2
C.0
D.4
Gọi s là tập hợp các số nguyên x thỏa mãn đẳng thức |x+1| + |x-10| = 11. Tính số phần tử của tập S.
ta có |x+1|+|x-10|
=|x+1|+|10-x|
\(\ge\left|x+1+10-x\right|=\left|11\right|=\)\(11\)
Mà lại có |x+1|+|x-10|=11
=> Dấu = xảy ra khi (x+1)(10-x)\(\ge0\)
<=> \(-1\le x\le10\)
do x nguyên => s có 12 giá trị
tk mk nha bn