Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f x = x - 6 x 2 + 4 trên đoạn [0;3] có dạng a - b c với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b+ c
A. S = 4
B. S = -2
C. S =-22
D. S = 5
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x ) = 2 x - 4 - 6 - x trên [-3;6]. Tổng M+m có giá trị là
A. -12
B. -6
C. 18
D. -4
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = 2x - 4 6 - x trên [-3;6]. Tổng M + m có giá trị là
A. -12
B. -6
C. 18
D. -4
Chọn B
Hàm số f(x) xác định và liên tục trên [-3;6].
Ta có:
Khi đó:
Vậy: M + m = 12 + (-18) = -6
Cho hàm số y = f(x) xác định, liên tục trên - 1 ; 3 2 và có đồ thị là đường cong như hình vẽ. Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) trên - 1 ; 3 2 là:
A. M + m = 7 2
B. M + m = - 3
C. M + m = 5 2
D. M + m = 3
Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) = 1 2 x - x + 1 trên đoạn [0;3]. Tính tổng S = 2m + 3M
A. S = - 7 2
B. S = - 3 2
C. S = -3
D. S = 4
Chọn A
Tập xác định
suy ra
Do đó S = 2m + 3M = - 7 2
Cho hàm số y=f(x), x ∈ - 2 ; 3 có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn - 2 ; 3 . Giá trị của M+n là
A. 6
B. 1
C. 5
D. 3
Cho hàm số y = f(x) nghịch biến trên ℝ và thỏa mãn [f(x) - x]f(x) = x 6 + 3 x 4 + 2 x 2 , ∀ x ∈ ℝ . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Giá trị của 3M - m bằng
A. 4
B. -28
C. -3
D. 33
Chọn A
Ta có:
Với nên f(x) đồng biến trên ℝ
Với nên f(x) nghich biến trên ℝ
Suy ra: Vì f(x) nghich biến trên ℝ nên và
Từ đây ,ta suy ra:
=> chọn đáp án A
Cho hàm số y=f(x), x ∈ - 2 ; 3 có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn - 2 ; 3 . Giá trị của S=M+m là:
A. 6
B. 3
C. 5
D. 1
Cho hàm số \(y=f\left(x\right)=x^2+6x+5\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y=f\left(f\left(x\right)\right)\) với \(x\in\left[-3;0\right]\). Tính tổng \(S=m+M.\)
Ta có:
Khi \(x\in\left[-3;0\right]\) thì \(f\left(x\right)\in\left[-4;5\right]\) (dùng BBT)
Lại có:
\(y=f\left(f\left(x\right)\right)=f^2\left(x\right)+6f\left(x\right)+5\)
Khi \(f\left(x\right)\in\left[-4;5\right]\) thì \(f\left(f\left(x\right)\right)\in\left[-4;60\right]\) (dùng BBT)
Do đó, \(m=-4\Leftrightarrow f\left(x\right)=-3\Leftrightarrow x=-2\)
và \(M=60\Leftrightarrow f\left(x\right)=5\Leftrightarrow x=0\)
\(\Rightarrow S=m+M=-4+60=56\)
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên - 1 ; 3 2 Giá trị của M – m bằng
A. 1 2
B. 5
C. 4
D. 3
Cho hàm số y=f(x) liên tục trên [-3;2] và có bảng biến thiên như sau. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [-1;2] Giá trị của M+m bằng
A. 3
B. 2
C. 1
D. 4
Dựa vào bảng biến thiên ta có
M = f ( - 1 ) = 3 , m = f ( 0 ) = 0 ⇒ M + m = 3
Chọn đáp án A.