Cho đồ thị hàm số y = a x 4 + b x 2 + c đạt cực đại tại A 0 ; 3 và đạt cực tiểu tại B 1 ; - 3 . Tính giá trị của biểu thức P = a + 3 b + 2 c
A. -12
B. -24
C. -9
D. 0
Cho hàm số y=f(x) có đồ thị. Hàm số đã cho đạt cực đại tại
Phương pháp:
Quan sát đồ thị hàm số đã cho để kết luận.
Cách giải:
Dựa vào đồ thị hàm số đã cho ta thấy hàm số đã cho đạt cực đại tại x=-1
Chọn A.
tìm m để đồ thị hàm số :
1) \(y=x^4-2\left(m+1\right)x^2-2m-1\) đạt cực đại tại x=1
2) \(y=x^4-\left(m+1\right)x^{2^{ }}+1\) đạt cực tiểu tại x=-1
1.
\(y'=4x^3-4\left(m+1\right)x\)
\(y''=12x-4\left(m+1\right)\)
Hàm đạt cực đại tại x=1 khi: \(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m+1\right)=0\\12-4\left(m+1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m>2\end{matrix}\right.\)
Không tồn tại m thỏa mãn
2.
\(y'=4x^3-2\left(m+1\right)x\)
\(y''=12x^2-2\left(m+1\right)\)
Hàm đạt cực tiểu tại x=-1 khi:
\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2\left(m+1\right)=0\\12-2\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m< 5\end{matrix}\right.\) \(\Rightarrow m=1\)
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=-x-f(x) đạt cực đại tại?
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y = f(x) xác định trên D = − 1 ; + ∞ \ 1 . Dưới đây là một phần đồ thị của y = f(x)
Hỏi trong các mệnh đề sau, có bao nhiêu mệnh đề đúng:
(I) Số điểm cực đại của hàm số trên tập xác định là 1.
(II) Hàm số có cực tiểu là -2 tại x = 1
(III) Hàm số đạt cực đại tại x = 2
(IV) Hàm số đạt cực đại tại x = -1
A. 0
B. 1
C. 2
D. 3
Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.
Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.
Chọn B
Cho hàm số y=f(x) có đạo hàm trên ℝ . Đồ thị hàm số y=f’(x) như hình vẽ bên. Hàm số g x = f x - x 3 3 + x 2 - x + 2 đạt cực đại tại
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Ta có
Suy ra số nghiệm của phương trình g'(x) = 0 chính là số giao điểm giữa đồ thị của hàm số f'(x) và parapol
Dựa vào đồ thị ta suy ra
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy g(x) đạt cực đại tại x = 1
Chọn C.
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đạt cực đại tại điểm
A. x = 0
B. x = 1
C. x = -3
D. x = -1
Đồ thị hàm số y = a x 4 + b x 2 + c đạt cực đại tại A(0;-2) và cực tiểu tại B 1 2 ; - 17 8 . Tính a + b + c
A. a + b + c = 2
B. a + b + c = 0
C. a + b + c = -1
D. a + b + c = -3
Đáp án C.
Xét hàm số y = a x 4 + b x 2 + c , ta có y ' = 4 a x 3 + 2 b x ; y ' ' = 12 a x 2 + 2 b ; ∀ x ∈ ℝ .
Điểm A(0;-2) là điểm cực đại của đồ thị hàm số ⇒ y ' 0 = 0 ⇔ y 0 = - 2 y ' ' 0 < 0 ⇔ c = - 2 b > 0 .
Điểm B( 1 2 ; - 17 8 ) là điểm cực tiểu của đồ thị hàm số ⇒ y ' 1 2 = 0 ; y 1 2 = - 17 8 y ' ' 0 > 0
⇔ a 2 + b = 0 a 16 + b 4 + c = - 17 8 ⇔ a + 2 b = 0 a + 4 b = - 2 ⇔ a = 2 b = - 1 ⇒ a + b + c = - 1 .
Đồ thị hàm số y = ax 4 + b x 2 + c đạt cực đại tại A 0 ; − 2 và cực tiểu tại B 1 2 ; − 17 8 . Tính a + b + c
A. a + b + c = 2
B. a + b + c = 0
C. a + b + c = − 1
D. a + b + c = − 3
Đáp án C.
Xét hàm số y = a x 4 + b x 2 + c ,
ta có y ' = 4 a x 3 + 2 b x ; ∀ x ∈ ℝ .
Điểm A 0 ; − 2 là điểm cực trị đại của đồ thị hàm số ⇒ y 0 = − 2 y ' 0 = 0 ⇔ c = − 2
Điểm B 1 2 ; − 17 8 là điểm cực tiểu của đồ thị hàm số ⇒ y 1 2 = − 17 8 y ' 1 2 = 0 ⇔ a 2 + b = 0 a 16 + b 4 = − 1 8
Từ đó suy ra a = 2 ; b = − 1 ; c = − 2 ⇒ tổng a + b + c = − 1.
Cho hàm số y= f(x) có đạo hàm trên R Đồ thị hàm số y= f’(x) như hình vẽ bên dưới.
Hàm số đạt cực đại tại
A. x= -1
B. x= 0
C. x= 1
D. x= 2
Cho hàm số y = f x với đạo hàm f ' x có đồ thị như hình vẽ. Hàm số g x = f x − x 3 3 + x 2 − x + 2 đạt cực đại tại điểm nào ?
A. x = -1
B. x = 1
C. x = 0
D. x = 2
Đáp án B
Phương pháp giải: Dựa vào bảng biến thiên của hàm số để kết luận điểm cực trị
Lời giải: