Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 11 2018 lúc 8:00

y '   =   3 2 3 x + 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 5 2018 lúc 18:22

y '   =   - 1 x - 2 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2018 lúc 7:12

y' = 4 - 2x

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 2 2018 lúc 7:25

y' = 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2019 lúc 10:29

y' = 8x - 0,6

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:05

a) Với \({x_0}\) bất kì, ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k{x^2} + c - \left( {kx_0^2 + c} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k\left( {{x^2} - x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left[ {k\left( {x + {x_0}} \right)} \right] = 2k{x_0}\)

Vậy hàm số \(y = k{x^2} + c\) có đạo hàm là hàm số \(y' = 2kx\)

b) Với \({x_0}\) bất kì, ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2} \right) = 3x_0^2\)

Vậy hàm số \(y = {x^3}\) có đạo hàm là hàm số \(y' = 3{x^2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2018 lúc 7:59

Cách 1 : Áp dụng công thức

Cách 2 : Áp dụng công thức

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 7 2019 lúc 11:36

Cách 1 : Áp dụng công thức

Cách 2 : Áp dụng công thức

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:23

\(\begin{array}{l}f'(x) = \mathop {\lim }\limits_{x \to 0} \frac{{f(x + {x_0}) - f(x)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{x + {x_0}}} - {e^x}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{x + {x_0}}} - {e^x}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x}({e^{{x_0}}} - 1)}}{x} = {e^x}.\mathop {\lim }\limits_{x \to 0} \frac{{{e^{{x_0}}} - 1}}{x} = {e^x}.1 = {e^x}\\ \Rightarrow f'(x) = {e^x}\end{array}\)