tìm số nguyên n để: \(n^3-3n^2-3n-1\) chia hết cho \(n^2+n+1\)
tìm số nguyên n để n^3 -3n^2 -3n -1 chia hết cho n^2 +n+1
tìm số nguyên n để
a) n^3 -2 chia hết cho n-2
b) n^3 - 3n^2 -3n -1 chia hét cho n^2 +n+1
c) 5^n - 2^n chia hết cho 63
Tìm số nguyên n để: n3-3n2-3n-1 chia hết cho n2+n+1
Tìm số nguyên n để: n3-3n2-3n-1 chia hết cho n2+n+1
n3-3n2-3n-1=n3+n2+n-4n2-4n-4+3
=n(n2+n+1)-4(n2+n+1)+3 chia hết cho n2+n+1
suy ra 3 chia hết cho n2+n+1 thế là được
Tìm số nguyên n để: n3-3n2-3n-1 chia hết cho n2+n+1
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
nha bạn
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c)5n – 2n chia hết cho 63
có cần giải ra k hay chỉ cần kq thui
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
tìm số nguyên n để :
1) n3 -2 chia hết cho n-2
2) n3 -3n2-3n-1 chia hết cho n2+n+1
3) 5n - 2n chia hết cho 63
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)