Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
SATO OG
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 21:07

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{118}\right)⋮57\)

Nguyễn Huy Tú
8 tháng 3 2022 lúc 21:08

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{118}\right)⋮57\)

Nguyễn Tuấn Anh Trần
8 tháng 3 2022 lúc 21:11

A =7(1+7+72)+74(1+7+72)+...+7118(1+7+72)A=7(1+7+72)+74(1+7+72)+...+7118(1+7+72)

=57 (7+74+...+7118)⋮57

Phạm Thái Nhã
Xem chi tiết

Ta có:

\(A=7+7^2+7^3+\cdots+7^{120}\)

\(A=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+\cdots+\left(7^{118}+7^{119}+7^{120}\right)\)

\(A=\left(7+7^2+7^3\right)+7^3\cdot\left(7+7^2+7^3\right)+\cdots+7^{117}\cdot\left(7+7^2+7^3\right)\)

\(A=\left(7+49+343\right)\cdot\left(1+7^3+\cdots+7^{117}\right)\)

\(A=399\cdot\left(1+7^3+\cdots+7^{117}\right)\)

\(A=57\cdot7\cdot\left(1+7^3+\cdots+7^{117}\right)\)

⇒ A ⋮ 57

Vậy A ⋮ 57

Bá Minh
Xem chi tiết
༺༒༻²ᵏ⁸
8 tháng 11 2021 lúc 21:14

\(A=7+7^2+7^3+...+7^{120}\)

\(A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(A=7.57+7^4.57+...+7^{118}.57\)

\(A=57\left(7+7^4+...+7^{118}\right)\)

\(\Rightarrow A⋮57\)

Khách vãng lai đã xóa
Trần Huỳnh Gia Huy
26 tháng 12 2021 lúc 14:31

Sợ quá!

Khách vãng lai đã xóa
Kim Tuấn Hiệp
28 tháng 12 2024 lúc 18:35

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

 

Phạm Cảnh Hưng
Xem chi tiết
ST
8 tháng 10 2016 lúc 21:20

A=7+72+73+...+72016

=(7+72)+(73+74)+...+(72015+72016)

=7.(1+7)+73.(1+8)+...+72015.(1+7)

=7.8+73.8+...+72015.8

=8.(7+73+...+72015) chia hết cho 8 (đpcm)

A=7+72+73+...+72016

=(7+72+73)+...+(72014+72015+72016)

=7.(1+7+72)+...+72014.(1+7+72)

=7.57+...+72014.57

=57.(7+...+72014) chia hết cho 57 (đpcm)

Nguyễn Phan Thảo Nguyên
Xem chi tiết
Lê Quang Phúc
30 tháng 9 2017 lúc 18:42

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

Phan Gia Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:10

\(A=7\left(1+7+7^2\right)+...+7^{88}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{88}\right)⋮57\)

kiên anime
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
9 tháng 12 2021 lúc 20:34

\(\left(7+7^2+7^3\right)+...+\left(7^{58}+7^{59}+7^{60}\right)\)

\(7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)

\(57.7+...+57.7^{58}\) \(⋮57\)

Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 20:36

\(=7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)

\(=57\cdot\left(1+...+7^{58}\right)⋮57\)

my duyen le
Xem chi tiết
Ha My Le Vi
Xem chi tiết
Kudo Shinichi
22 tháng 12 2021 lúc 18:45

\(A=7+7^2+7^3+...+7^{119}+7^{120}\)

\(\Rightarrow7A=7^2+7^3+7^4+...+7^{120}+7^{121}\)

\(\Rightarrow7A-A=\left(7^2+7^3+...+7^{120}+7^{121}\right)-\left(7+7^2+...+7^{119}+7^{120}\right)\)

\(\Rightarrow6A=7^2+7^3+...+7^{120}+7^{121}-7-7^2-...-7^{119}-7^{120}\)

\(\Rightarrow6A=7^{121}-7\)

\(\Rightarrow A=\dfrac{7^{121}-7}{6}\)