Cho cosα = - 2 / 3 với π < α < 3π/2. Giá trị cotα là
Cho cotα = -2/3 với π/2 < α < π. Giá trị cosα là
1 / ( sin 2 α ) = 1 + c o t 2 α = 1 + 4/9 = 13/9 ⇒ sin 2 α = 9 / 13 .
Suy ra sinα = ± 3 / 13 .
Vì π/2 < α < π nên sinα > 0. Vậy sinα = 3 / 13 . .
Từ đó cosα = sinα.cotα = ( - 2 ) / 13 .
Đáp án là A.
Cho cosα = 2 / 3 (0 <α < π/2 ). Giá trị của cot(α + 3π/2) là
Vậy các phương án B, C, D bị loại và đáp án là A.
Đáp án: A
cho sin α bằng 1/3 và π/2 <α<π . Tính giá trị của cosα,tanα,và cotα
Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0
\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)
\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)
Chúc bn học tốt!
Cho cos α=-2/5 và π<α<3π/2. tính tanα, sinα ,cotα
\(sin\alpha=-\sqrt{1-cos^2\alpha}=-\dfrac{\sqrt{21}}{5}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{21}}{5}}{-\dfrac{2}{5}}=\dfrac{\sqrt{21}}{2}\)
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{2}{\sqrt{21}}\)
Cho sinα = -2 5 /5 với 3π/2 < α < 2π. Giá trị cotα là
A. 1/2 B. 1/ 5
C. -1/2 D. -3/ 5
c o t 2 α = 1 / ( sin 2 α ) – 1 = 25 / 20 – 1 = 1/4 ⇒ cotα = ±1/2.
Vì 3π/2 < α < 2π nên cotα < 0. Vậy cotα = (-1)/2.
Đáp án: C
Cho tanα - 3cotα = 6 và π < α < 3π/2. Tính
sinα + cosα
Cho tanα = 2cotα và 3π/2 < α < 2π. Giá trị của biểu thức sinα + cosα là
Vì tanα = 2cotα và 3π/2 < α < 2π nên 3π/2 < α < 7π/4.
Do đó sinα < (- 2 )/2 và cosα < 2 /2.
Vì vậy sinα + cosα < 0.
Suy ra các phương án A, C, D bị loại.
Đáp án: B
Cho π < α 3π/2. Xác định dấu của các giá trị lượng giác sau tan(3π/2 - α)
Cho π < α 3π/2. Xác định dấu của các giá trị lượng giác sau cos(α - π/2)
Vì π < α 3π/2 thì π/2 < α - π/2 < π, do đó cos(α - π/2) < 0