Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 12 2017 lúc 15:58

Giải sách bài tập Toán 12 | Giải sbt Toán 12 trên khoảng (− ∞ ;+ ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có min f(x) = −1/4; max f(x) = 1/4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2019 lúc 12:23

Giải sách bài tập Toán 12 | Giải sbt Toán 12 trên khoảng Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′ = 0 ⇔ x = π

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y( π ) = −1

panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2017 lúc 4:55

min f(x) = f(1) = 4. Không có giá trị lớn nhất.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 3 2018 lúc 1:55

Đáp án là A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2019 lúc 16:42

min f(x) = f( 2 ) = −3; max f(x) = f(2) = f(0) = 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 2 2017 lúc 7:09

Xét hàm số f(x) =  x 3  + 3 x 2  − 72x + 90 trên đoạn [-5;5]

f′(x) =3 x 2  + 6x − 72;

f′(x) = 0 Giải sách bài tập Toán 12 | Giải sbt Toán 12

f(−5) = 400; f(5) = −70; f(4) = −86

Ngoài ra, f(x) liên tục trên đoạn [-5;5] và f(−5).f(5) < 0 nên tồn tại x 0   ∈ (−5;5) sao cho f( x 0 ) = 0

Ta có g(x) = |f(x)| ≤ 0 và g( x 0 ) = |f( x 0 )| = 0;

g(−5) = |400| = 400

g(5) = |−70| = 70; g(4) = |f(4)| = |−86| = 86

Vậy min g(x) = g( x 0 ) = 0; max g(x) = g(−5) = 400

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2017 lúc 14:43

Giải bài 8 trang 147 sgk Giải tích 12 | Để học tốt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2017 lúc 15:36

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f CĐ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12