Tứ giác ABCD có các đường chéo cắt nhau tại O. Cho biết AC=4cm, BD = 5cm, A O B ^ = 60 0 . Tính diện tích tứ giác ABCD
1) Cho tứ giác ABCD có AC cắt BD tại O . Biết OA = 3cm, OB = 4cm , AB =5cm , OC =2OA ; OD=2OB .
Khi đó CD bằng: A.) 5cm. B.) 10cm . C.) 15cm . D.) 20cm .
2) Cho tứ giác ABCD . Hai đường chéo AC và BD cắt nhau tại O . Gọi E là điểm trong của tam giác OCD . Số tứ giác (tứ giác lồi và tứ giác không lồi) nhận 4 trong 5 điểm A, B , .., D , E làm đỉnh là:
A) 3
B) 6
C) 9
D) 12
Cho tứ giác ABCD có các đường chéo cắt nhau tại O. Cho biết AC=4cm , BD=5cm, góc AOB=50 độ. Tính diện tích tứ giác ABCD.
mik cần gấp nhé bạn nào giỏi giúp mik với!!!!
Cho tứ giác ABCD có các đường chéo cắt nhau tại O.Cho biết AC=4cm, BD=5cm, AOB=\(50^o\).Tính diện tích tứ giác ABCD
GIẢI GIÚP MÌNH VỚI M.N !!!!!
Cho tứ giác ABCD có các đường chéo cắt nhau tại Ở . Cho biết AC=4cm,BD=5cm ,AOB=60° tính diện tích tứ giác ABCD
Lời giải:
Vận dụng bổ đề $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:
$S_{ABCD}=S_{OAB}+S_{OBC}+S_{ODC}+S_{AOD}$
$=\frac{1}{2}.OA.OB.\sin \widehat{AOB}+\frac{1}{2}.OB.OC.\sin \widehat{BOC}+\frac{1}{2}.OD.OC.\sin \widehat{DOC}+\frac{1}{2}.OA.OD.\sin \widehat{AOD}$
$=\frac{1}{2}.OA.OB\sin 60^0+\frac{1}{2}.OB.OC.\sin 120^0+\frac{1}{2}.OD.OC\sin 60^0+\frac{1}{2}.OA.OD.\sin 120^0$
$=\frac{\sqrt{3}}{4}(OA.OB+OB.OC+OC.OD+OD.OA)$
$=\frac{\sqrt{3}}{4}(AC.BD)=\frac{\sqrt{3}}{4}.4.5=5\sqrt{3}$ (cm vuông)
Tứ giác ABCD có các đường chéo cắt nhau tại O.Biết AC=4cm,BD=5cm,\(\widehat{AOB=50^o}\)
Tính diện tích tứ giác ABCD
Cho tứ giác ABCD có các đường chéo cắt nhau tại O. Cho biết AC= 4cm, BD= 5cm, \(\widehat{AOB=50^o}\). Tính diện tích tứ giác ABCD.
Vẽ \(AH\perp BD,CK\perp BD\) . Chú ý: \(AH=OA.\sin50^o,CK=OC.\sin50^o.\)
Thanks
Sử dụng công thức (1): Với a, b, c là 3 cạnh đối diện của \(\widehat{A}\), \(\widehat{B}\), \(\widehat{C}\) của tam giác ABC thì \(S_{ABC}=\frac{1}{2}AB\). \(AC\sin A\)
Chứng minh: Kẻ \(BH\perp AC\Rightarrow S_{ABC}=\frac{BH.AC}{2}\)
Xét tam giác ABH vuông thì sin \(A=\frac{BH}{AB}\Rightarrow BH=\sin A.AC\)
Từ hai điều trên suy ra: \(S_{ABC}=\frac{AB.AC.\sin A}{2}\left(đpcm\right)\)
Trở lại bài toán:
Sử dụng công thức \(\sin\alpha=\sin\left(180-\alpha\right)\Rightarrow\sin AOD=\sin AOB=\sin BOC=\sin DOC\)
Áp dụng công thức (1):
\(S_{ABCD}=S_{AOB}=S_{AOD}=S_{DOC}=S_{BOC}=\frac{AO.OB.\sin AOB+AO.DO.\sin AOD+DO.CO.\sin DOC+BO.CO.\sin BOC}{2}\)
\(=\frac{\sin AOB\left(AO.OB+AO.OD+DO.OC+BO.OC\right)}{2}=\frac{\sin AOB\left(AO.BD+OC.BD\right)}{2}=\frac{\sin50^o.BD.AC}{2}\)
\(=\frac{20\sin50}{2}=10\sin50\)
Tứ giác ABCD có các đường chéo cắt nhau tại O. Biết AC = 4 cm; BD = 5 cm; góc AOD= 50o . Tính diện tích tứ giác ABCD.
Cho tứ giác ABCD có hai đường chéo AC và BD cát nhau tại O. Các đường thẳng AB và CD cắt nhau tại M. Biết AB=7cm, CD=11cm, MA=5cm, MD=4cm. Chứng minh:
Tam giác MAD đồng dạng tam giác MCB
Góc MAC bằng góc MDB
OA.OC bằng OD.OB
tam giác AOD đồng dạng tam giác BOC
Tứ giác ABCD có 2 đường chéo cắt nhau ở O. Biết góc AOD = 70 độ; AC = 5,3cm; BD = 4cm. Tính S của ABCD.