Chứng minh Bất đẳng thức sau
2 (a^2+b^2) bé hơn hoặc bằng (a+b)^2
chứng minh bất đẳng thức Bunhiacopxki : (ac + bc )2 bé hơn hoặc bằng ( a2 + b2 ) . ( c2 + d2 )
Chứng minh bất đẳng thức:
a) a^2 + b^2 + c^2 + \(\frac{3}{4}\)lớn hơn hoặc bằng - a - b - c
b) a^2 + b^2 + 4 lớn hơn hoặc bằng ab + 2(a+ b)
\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)
\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b ) chuyển vế tương tự
Chứng minh bất đẳng thức a^2+b^2/4 lớn hơn hoặc bằng ab
Help me.....
Chứng minh bất đẳng thức :
(a+b )2 lớn hơn hoặc bằng 4ab
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
\(\left(a+b\right)^2\ge4ab\)
<=> \(a^2+2ab+b^2\ge4ab\)
<=> \(a^2+2ab+b^2-4ab\ge0\)
<=> \(a^2-2ab+b^2\ge0\)
<=> \(\left(a-b\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra <=> a=b
bài 3 : chứng minh các bất đẳng thức sau
a, (a+b/2)2 > hoặc bằng ab
b, a/b +b/a > hoặc bằng 2 với a,b>0
a)\(\left(a+\frac{b}{2}\right)^2\ge ab\)
\(\Leftrightarrow a^2+ab+\frac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2+ab+\frac{b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2+\frac{b^2}{4}\ge0\)(luôn lúng)
vậy \(\left(a+\frac{b}{2}^2\right)\ge ab\)
b)\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+2ab}{ab}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge0\)(luôn đóng vì a,b>0)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b>0
b) \(\frac{a}{b}\rightarrow x\).C/m: \(x+\frac{1}{x}\ge2\)
Có \(\left(\sqrt{x}-\sqrt{\frac{1}{x}}\right)^2\ge0\Rightarrow x-2+\frac{1}{x}\ge0\Rightarrow x+\frac{1}{x}\ge2\) (đpcm)
Chứng minh bất đẳng thức a^2+b^2 lớn hơn hoặc bầng ab?
a^2 + b^2 >= ab
<=> a^2 + b^2 -ab >= 0
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0
{a - (1/2)b}^2 luôn >= 0
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0
Bài toán của bạn đưa về giải bất đẳng thức
a^2 + b^2 >= ab
<=> a^2 + b^2 -ab >= 0
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0
{a - (1/2)b}^2 luôn >= 0
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0
* Lưu ý: ab = 2.(1/2).ab
b^2 = (1/4).b^2 + (3/4).b^2
bài 3 : chứng minh các bất đẳng thức sau
a, (a+b/2)2 > hoặc bằng ab
b, a/b +b/a > hoặc bằng 2 với a,b>0
Chứng minh bất đẳng thức: a+ 1/a lớn hơn hoặc bằng 2 với a>0
Đề sai à, giả sử \(a>1\Rightarrow\frac{a+1}{a}< 2\)
chứng minh bất đẳng thức : ( a + 1 )2 lớn hơn hoặc bằng 4a
mik tự hào 2 tiếng thằng ngơ nhưng ko ngơ như cậu nghĩ đâu