Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Phan Tuấn Anh
Xem chi tiết
tibarca41
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2017 lúc 12:18

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

nguyenthihoa
Xem chi tiết
Trần Thu Phương
Xem chi tiết
Dũng Lê Trí
1 tháng 8 2018 lúc 21:33

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

Không Tên
1 tháng 8 2018 lúc 21:33

\(\left(a+b\right)^2\ge4ab\)

<=>  \(a^2+2ab+b^2\ge4ab\)

<=>  \(a^2+2ab+b^2-4ab\ge0\)

<=>  \(a^2-2ab+b^2\ge0\)

<=>  \(\left(a-b\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra <=> a=b

Nguyễn Tũn
1 tháng 8 2018 lúc 21:33

Mình không biết làm.

nguyên công quyên
Xem chi tiết
Hà Ngọc Điệp
3 tháng 4 2019 lúc 19:17

a)\(\left(a+\frac{b}{2}\right)^2\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2+\frac{b^2}{4}\ge0\)(luôn lúng)

vậy \(\left(a+\frac{b}{2}^2\right)\ge ab\)

b)\(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2+2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge0\)(luôn đóng vì a,b>0)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b>0

tth_new
4 tháng 4 2019 lúc 10:02

b) \(\frac{a}{b}\rightarrow x\).C/m: \(x+\frac{1}{x}\ge2\)

Có \(\left(\sqrt{x}-\sqrt{\frac{1}{x}}\right)^2\ge0\Rightarrow x-2+\frac{1}{x}\ge0\Rightarrow x+\frac{1}{x}\ge2\) (đpcm)

shitbo
20 tháng 4 2019 lúc 8:00

Tth m phải ns thêm lak vs x>0 x=-1 thì 

nói làm gì ngại lắm
Xem chi tiết
༺ℬøşş༻AFK_sasuke(box -nv...
9 tháng 3 2019 lúc 19:15

a^2 + b^2 >= ab 
<=> a^2 + b^2 -ab >= 0 
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0 
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0 
{a - (1/2)b}^2 luôn >= 0 
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0

༺ℬøşş༻YTB_TEAM bí mật
10 tháng 3 2019 lúc 8:38

Bài toán của bạn đưa về giải bất đẳng thức 
a^2 + b^2 >= ab 
<=> a^2 + b^2 -ab >= 0 
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0 
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0 
{a - (1/2)b}^2 luôn >= 0 
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0 
* Lưu ý: ab = 2.(1/2).ab 
b^2 = (1/4).b^2 + (3/4).b^2

hỏa quyền ACE
Xem chi tiết
Thảo Bùi
Xem chi tiết
Le Thi Khanh Huyen
24 tháng 6 2016 lúc 16:05

Đề sai à, giả sử \(a>1\Rightarrow\frac{a+1}{a}< 2\)

Cao Phan Tuấn Anh
Xem chi tiết
Cao Phan Tuấn Anh
27 tháng 12 2015 lúc 20:14

mik tự hào 2 tiếng thằng ngơ nhưng ko ngơ như cậu nghĩ đâu