lon hon hoac bang ban
\(2\left(a^2+b^2\right)=a^2+b^2+a^2+b^2\ge a^2+b^2+2ab=\left(a+b\right)^2\)
lon hon hoac bang ban
\(2\left(a^2+b^2\right)=a^2+b^2+a^2+b^2\ge a^2+b^2+2ab=\left(a+b\right)^2\)
chứng minh bất đẳng thức Bunhiacopxki : (ac + bc )2 bé hơn hoặc bằng ( a2 + b2 ) . ( c2 + d2 )
Chứng minh bất đẳng thức: a+ 1/a lớn hơn hoặc bằng 2 với a>0
chứng minh bất đẳng thức : ( a + 1 )2 lớn hơn hoặc bằng 4a
Cho a lớn hơn hoặc bằng 0, b lớn hơn hoặc bằng 0 . Chứng minh bất đẳng thức Cauchy : \(\frac{a+b}{2}\)lớn hơn hoặc bằng \(\sqrt{ab}\)
Chứng minh: \(\frac{3}{2}\ge sin\frac{A}{2}+sin\frac{B}{2}+sin\frac{C}{2}>1\)
P/s: Không dùng bất đẳng thức lượng giác hoặc đẳng thức lượng giác của lớp 10 (nếu dùng thì phải chứng minh lại bằng kiến thức lớp 9)
Chứng minh bất đẳng thức sau bằng phương pháp hình học:
\(\sqrt{a^2+b^2}.\sqrt{b^2+c^2}\ge b\left(a+c\right)\)
chứng minh bất đẳng thức
(a1+a2+....+an)2 lớn hơn hoặc bằng n(a12+a22+.....+an2)
Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: \(\frac{a+b}{2}>hoặc=\sqrt{ab}\)
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2