Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Duyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 4 2017 lúc 13:04

Giải sách bài tập Toán 10 | Giải sbt Toán 10

-π = -3,14; -2π = -6,28; (-5π)/2 = -7,85.

Vậy (-5π)/2 < -6,32 < -2π.

Do đó điểm M nằm ở góc phần tư thứ II.

Đáp án: B

Đỗ Khánh Hòa
Xem chi tiết
Nguyễn Linh Chi
5 tháng 5 2020 lúc 16:09

Bạn kiểm tra lại đề bài!

Khách vãng lai đã xóa
Pek tiêu
5 tháng 5 2020 lúc 16:35

Hình như đề bài ko đúng đó bn!..bn kiểm tra lại

Khách vãng lai đã xóa
Lê Tuấn Minh
9 tháng 5 2020 lúc 21:07

đề bài sai rồi

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2019 lúc 18:21

Giải sách bài tập Toán 10 | Giải sbt Toán 10

(h.66) Ta có

A M 2  = MA’ = MA + AA’

Suy ra

Sđ A M 2  = -α + π + k2π, k ∈ Z.

Vậy đáp án là B.

6.13. (h.67) Ta có

Sđ A M 3  = -sđ AM = -α + k2π, k ∈ Z.

Đáp án: D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2018 lúc 6:08

Chọn đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 1 2019 lúc 11:16

+) Định nghĩa của sin α; cos α

Trên đường tròn lượng giác, xét cung AM có số đo α

Gọi H và K lần lượt là hình chiếu của M trên trục Ox, Oy.

Tung độ y = OK¯ của điểm M được gọi là sin của α : sin α = OK¯

Hoành độ x = OH¯ của điểm M được gọi là cos của α : cos α = OH¯

Trên đường tròn lượng giác trong mặt phẳng Oxy, lấy điểm A (1; 0) làm gốc.

Khi đó các cung có số đo hơn kém nhau một bội của 2π có điểm cuối trùng nhau.

Giả sử cung α có điểm cuối là M(x; y)

Khi đó với mọi k ∈ Z thì cung α + k2π cũng có điểm cuối là M.

Giải bài 1 trang 155 SGK Đại Số 10 | Giải toán lớp 10

sin α = y, sin (α + k2π) = y nên sin(α + k2π) = sinα

cos α = x, cos(α + k2π) = x nên cos(α + k2π) = cosα

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 0:02

a: pi/2<a<pi

=>sin a>0

\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)

b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

c: \(sin\left(a-\dfrac{pi}{3}\right)\)

\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)

d: \(cos\left(a-\dfrac{pi}{6}\right)\)

\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)

phan nana
Xem chi tiết
Nguyệt Minh
Xem chi tiết
Trần Ái Linh
27 tháng 5 2021 lúc 12:52

`A=sin(π-α)+cos(π+α)+cos(-α)`

`= sinα-cosα+cosα=sinα=3/5`

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2019 lúc 9:09

Chọn B.

Ta có: