Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dun Trần Đông
Xem chi tiết
phantuananh
1 tháng 3 2016 lúc 21:09

NHÂN BIỂU THỨC LIÊN HỢP 

KQ: X+Y=0

Thiên Di
1 tháng 3 2016 lúc 21:27

0

 

Nguen Van Thai
10 tháng 3 2016 lúc 20:59

0

Đoàn Thị Thu Hương
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Vu Huong Giang
1 tháng 3 2016 lúc 14:46

Không chẳng bít j luôn

le diep
Xem chi tiết
Tuyển Trần Thị
24 tháng 10 2017 lúc 17:50

\(\)\(\left(\sqrt{x^2+3}+x\right)\left(\sqrt{x^2+3}-x\right)=3=\left(\sqrt{x^2+3}+x\right)\left(\sqrt{y^2+3}+y\right)\)

\(\Rightarrow\sqrt{x^2+3}-x=\sqrt{y^2+3}+y\)(1)

ttu \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\) (2)

lay (1)+(2)

\(-\left(x+y\right)=x+y\Rightarrow x+y=0\)

ma \(A=x^{2013}+y^{2013}+1=\left(x+y\right)M+1=1\)

le diep
24 tháng 10 2017 lúc 22:14

???????????

Tiến Dũng Đinh
Xem chi tiết
Thắng Nguyễn
5 tháng 3 2017 lúc 19:05

Nhân cả 2 vế của pt đầu với \(x-\sqrt{x^2+2013}\) được:

\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2013}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế pt đầu với \(y-\sqrt{y^2+2013}\) được:

\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(2\left(x+y\right)=0\Rightarrow x+y=0\)

Tiến Dũng Đinh
5 tháng 3 2017 lúc 6:27

huhu ko ai giúp mình à @@

dương minh phương
5 tháng 3 2017 lúc 8:38

sorry you because bài này mình không biết làm

kích cho mình nha

Mạnh Phan
Xem chi tiết
Mạnh Phan
Xem chi tiết
anonymous
18 tháng 12 2020 lúc 19:04

Ta có:

\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\\ \Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\\ \Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\left(1\right)\)

Tương tự: \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\left(2\right)\)

Do đó: 2x=-2y

Suy ra: x=-y

Do đó:

\(x^{2013}+y^{2013}=\left(-y\right)^{2013}+y^{2013}=0\left(ĐPCM\right)\)

Vi Vu
Xem chi tiết
Nguyễn Nhật Minh
13 tháng 12 2015 lúc 22:21

\(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(x-\sqrt{x^2+\sqrt{2013}}\right)=x^2-x^2-\sqrt{2013}=-\sqrt{2013}\) (1)

Theo đề bài  và (1) => dpcm

b) theo a có \(y+\sqrt{y^2+\sqrt{2013}}=-x+\sqrt{x^2+\sqrt{2013}}\)(2)

tương tự ta có \(x+\sqrt{x^2+\sqrt{2013}}=-y+\sqrt{y^2+\sqrt{2013}}\)(3)

Cộng 2 vế (2)  với (3) => x+y = -x -y

hay 2(x+y) =0 =>S= x+y =0

Huy vũ quang
Xem chi tiết
Lightning Farron
2 tháng 9 2016 lúc 8:59

Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)

Từ (1) và (2) =>2(x+y)=0

=>x+y=0<=>x=-y

<=>x2013=-y2013

<=>x2013+y2013=0

A=x2013+y2013+1=1