chứng tỏ rằng nếu số abcd chia hết cho 101 thì ab -cd =0
Chứng tỏ rằng :
abcd chia hết cho 101 thì ab-cd=0
nếu ab-cd=0 thì abcd chia hết cho 101
\(abcd\) chia hết cho 101
<=> abcd = 101k (k \(\ge10\) ; k \(\in\) N)
<=> ab = cd
=> ab - cd = 0
điều ngược lại là ab - cd = 0 thì abcd chia hết cho 101 cũng đúng.
=> điều phải chứng minh
Mình mới vào nên chưa biết nhiều .Giúp mình nha , thanks
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết 99 thì ab + cd chia hết cho 99 và ngược lại
Bài 2 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Chứng tỏ rằng: Nếu abcd chia hết cho 101 thì ab - cd=0 và ngược lại
abcd chia hết cho 101 => ab = cd => ab - cd = 0
abcd=100ab+cd=101ab-ab=cd
suy ra abcd=101-(ab-cd)
mik gợi ý cho từng đó nha hi hi
Chứng tỏ rằng: nếu số abcd chia hết cho 101 thì ab-cd chia hết cho 101 và ngược lại.
Mình làm đúng đó
Đảm bảo 100%
Ủng hộ nha
abcd = ab x 100 + cd = ab x 101 - ab + cd
Vì abcd và ab x 101 chia hết cho 101 nên - ab + cd chia hết cho 101 \(\Rightarrow\)- ( ab - cd ) chia hết cho 101 \(\Rightarrow\)ab - cd chia hết cho 101 ( ĐPCM )
Ngược lại, ab - cd chia hết cho 101 nên - ab + cd chia hết cho 101. Mà ab x 101 chia hết nên abcd chia hết cho 101 ( ĐPCM )
Chứng tỏ rằng nếu abcd chia hết cho 101 thì ab-cd=0
Ta có:
\(\overline{abcd}=100\overline{ab}+\overline{cd}=\left(100\overline{ab}+\overline{ab}\right)+\left(\overline{cd}-\overline{ab}\right)=101\overline{ab}+\left(\overline{cd}-\overline{ab}\right)\)
Do \(\overline{abcd}⋮101\) và \(101\overline{ab}⋮11\) nên \(\overline{cd}-\overline{ab}⋮101\). Mà \(10-99\le\overline{cd}-\overline{ab}\le99-10\) nên \(-89\le\overline{cd}-\overline{ab}\le89\Rightarrow\overline{cd}-\overline{ab}=0\)
Ta có:
abcd chia hết cho 101
<=> ab=cd ok bạn vì abcd có 4 cs
ab.101+cd-ab
Vì: ab.101 chia hết cho 101
mà abcd chia hết cho 101
cd-ab=< 89 cd-ab>=-89 chỉ có số 0 chia hết cho 101
Chứng tỏ rằng: Nếu abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
abcd chia hết cho 101
=>ab=cd
=>ab-cd=0
chứng tỏ rằng
nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta đều có :
a, n . ( n + 2 ) ( n + 8 ) chia hết cho 3
b, n . ( n + 4 ) ( 2n + 1 ) chia hết cho 6
* Ai làm hết và trình bày rõ ràng tặng 3 like nha *
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
Chứng minh rằng: Nếu abcd chia hết cho 101 thì ab - cd=0 và ngược lại
nếu abcd chia hết cho 101
=>abcd có dạng 101.mn (m,n là số tự nhiên; m khác 0)
mà 101.mn = (100+1).mn = mn00 + mn = mnmn
vậy abcd có dạng mnmn
từ đó ta có : ab-cd = mn-mn = 0
cd-ab = mn-mn = 0