Cho A= Căn x-5/ căn x+5. Tìm x để A < 1/3
Cho p=(2 căn x -9)/(căn x-2)(căn x-3) - (căn x+3)/(căn x-2) - (2 căn x+1)/(3-căn) ( x > 0; x ≠ 4, x ≠ 9)
a. Rút gọn P
b. Tìm x để P = 5
c. Tìm x nguyên để P có giá trị là số tự nhiên.
cho A= 2 căn a-9/a-5 căn a+6 - căn a+3/ căn a-2 - 2 căn a-1/3- căn a
a) rút gọn A
b)tìm x thuộc Z để A thuộc Z
c)tìm x để A đạt GTNN
giúp mình vs ạ
a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}-1}{3-\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{2\sqrt{a}-9-a+9+2a-5\sqrt{a}+2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-3\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}-1}{\sqrt{a}-3}\)
b: A là số nguyên
=>\(\sqrt{a}-3+2⋮\sqrt{a}-3\)
=>\(\sqrt{a}-3\in\left\{1;-1;2;-2\right\}\)
=>a thuộc {16;25;1}
Cho A= căn x +2 trên căn x -5 và B= 3 trên căn x +5 rồi cộng cho 20-2 căn x trên x-25 đề a)rút gọn B b) tìm x để A=B×|x-4|
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
cho A=6 căn x/x-9 -5 căn x/3- căn x + căn x/căn x+3
a,rút gọn a
b,tìm x để A>2
giúp mk nha
\(a,\)\(đkxđ\Leftrightarrow x\ge0\)và \(x-9\ne0\Rightarrow x\ne9\)
\(A=\frac{6\sqrt{x}}{x-9}-\frac{5\sqrt{x}}{3-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(\)\(=\frac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{6\sqrt{x}+5x+15\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{18\sqrt{x}+6x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{6\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{6\sqrt{x}}{\sqrt{x}-3}\)
\(b,\)Để \(A>2\)\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>2\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>\frac{12\sqrt{x}}{x-3}\)
\(\Rightarrow\frac{6\sqrt{x}-12\sqrt{x}}{\sqrt{x}-3}>0\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}< 0\)
Vì \(\sqrt{x}\ge0;\)\(6>0\)\(\Rightarrow6\sqrt{x}\ge0\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow\sqrt{x}-3< 0\)
\(\Rightarrow\sqrt{x}< 3\Rightarrow\sqrt{x}< \sqrt{9}\)\(\Leftrightarrow x< 9\)
Mà \(x\ge0\left(đkxđ\right)\)\(\Rightarrow0\le x< 9\)
.Tìm x , biết : a, x + 2 căn x = 0 ; b, 5x= 10 căn x ; 2. Cmr : a, căn 50 - căn 17 > 11 ; b, căn 6 + căn 12 + căn 30 +căn 56 < 19 ; 5. So sánh a, căn 26 + căn 17 và 9 ; b, căn 6 - căn 5 và 1 ; 6. Cho B = căn x +1 tất cả phần căn x - 2 .Tìm x để B nhận giá trị nguyên . help me !
Lê Thanh Thùy Ngân
cmr là chứng minh rằng bạn nhé
Bài 1: Tìm điều kiện của x để các biểu thức sau có nghĩa.
a) Căn(x-2) + 1/căn(x-3)
b) Căn (x+3/x-2)
Bài 2: Thức hiện phép tính.
a) A= Căn(2- căn 5)2 - căn 5
b) B= Căn (7- 4căn3) + căn 3
c) C= Căn (5 - 2căn6) + Căn (5 + 2căn6)
d) D= (căn 2 + căn 10) / (1 + căn 5)
e) E= Căn(2 - căn 3) + Căn(2 + căn3)
1 .Tìm x , biết : a, x + 2 căn x = 0 ; b, 5x= 10 căn x ; 2. Cmr : a, căn 50 - căn 17 > 11 ; b, căn 6 + căn 12 + căn 30 +căn 56 < 19 ; 5. So sánh a, căn 26 + căn 17 và 9 ; b, căn 6 - căn 5 và 1 ; 6. Cho B = căn x +1 tất cả phần căn x - 2 .Tìm x để B nhận giá trị nguyên . help me !
1, cho A= căn 3x-5/x-1
a, tìm đk của x để A có nghĩa
b,Tìm x để A=3
#giúp mk vs ạ
a, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3x-5}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-5\ge0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-5\le0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{3}\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{3}\\x< 1\end{matrix}\right.\)
Vậy ...
b, Ta có : \(A=\sqrt{\dfrac{3x-5}{x-1}}=3\)
\(\Leftrightarrow3x-5=9x-9\)
\(\Leftrightarrow x=\dfrac{2}{3}\left(TM\right)\)
Vậy ...