Tập hợp các số nguyên x thỏa mãn \(\frac{1}{2}-\left(\frac{1}{3}+\frac{3}{4}\right)\) <x< \(\frac{8}{3}-\left(\frac{1}{5}+\frac{3}{4}\right)\)
Tập hợp các số nguyên x thỏa mãn
\(\frac{1}{2}-\left(\frac{1}{3}+\frac{3}{4}\right)
tập hợp các số nguyên x thỏa mãn \(\frac{1}{2}-\left(\frac{1}{3}+\frac{3}{4}\right)\)< x < \(\frac{8}{3}-\left(\frac{1}{5}+\frac{3}{4}\right)\)
dấu "/"là phần nha
1/2-(1/3+3/4)<x<8/3(1/5+3/4)
-7/12<x<103/60
-7/12<x/1<103/60
-35/60<60x/60<103/60
ta có:-35<60x<103
suy ra:60x thuộc {0,60}
suy ra:x thuộc {0,1}
KẾT QUẢ: X=0 hoặc 1
0 hoặc **** đấy chứng nữa minh giải bài cho
đổi mẫu lên tử, tử xuống mẫu cũng đc mà, nhanh gọn hơn nhiều, ít qui đồng lắm
Tìm tập hợp các số nguyên x thỏa mãn:
a, \(3\frac{1}{3}:2\frac{1}{2}-1< x< 7\frac{2}{3}.\frac{3}{7}+\frac{5}{2}\)
b,\(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
Tìm tập hợp các số nguyên x thỏa mãn
a. \(3\frac{1}{3}:2\frac{1}{2}-1< x< 7\frac{2}{3}.\frac{3}{7}\)\(+\frac{5}{2}\)
b. \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
Bài giải
a, \(3\frac{1}{3}\text{ : }2\frac{1}{2}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{10}{3}\text{ : }\frac{5}{2}-1< x< \frac{23}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{4}{3}-1< x< \frac{23}{7}+\frac{5}{2}\)
\(\frac{1}{3}< x< \frac{81}{14}\)
\(\Rightarrow\text{ }0,\left(3\right)< x< 5,78...\)
\(\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\text{ ; }5\right\}\)
b, \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
\(\frac{1}{2}-\frac{7}{12}< x< \frac{1}{48}+\frac{5}{48}\)
\(-\frac{1}{12}< x< \frac{1}{8}\)
\(\Rightarrow\text{ }-0,08\left(3\right)< x< 0,125\)
\(\Rightarrow\text{ }x\in\varnothing\)
tập hợp các số nguyên x thỏa mãn
\(x\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\right)<1\frac{6}{7}\)
Lời giải:
$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$
$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$
$x(1-\frac{1}{7})< \frac{13}{7}$
$x.\frac{6}{7}< \frac{13}{7}$
$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$
Vì $x$ là số nguyên nên $x\leq 2$
Vậy $x$ là các số nguyên sao cho $x\leq 2$.
Tìm tập hợp các số nguyên x thỏa mãn :
a) \(3\frac{1}{3}:2\frac{1}{2}-1
tập hợp các số nguyên X thoả mãn \(\frac{1}{2}-\left(\frac{1}{3}+\frac{3}{4}\right)
1) Có những cặp số nguyên nào thỏa mãn x.y=x+y
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
Tập hợp các số nguyên thỏa mãn là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu “;”).