Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Ngọc Thùy _2208
Xem chi tiết
Bảo anh Trần
Xem chi tiết
nguyen diem quynh
Xem chi tiết
Pham Duong
Xem chi tiết
Nguyễn Hương
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
9 tháng 1 2023 lúc 16:54

a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AMB` và Tam giác `AMC` có:

`AM chung`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`

b, Vì Tam giác `AMB =` Tam giác `AMC (a)`

`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).

Xét Tam giác `EAM` và Tam giác `FAM` có:

AM chung

\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`

\(\widehat{AEM}=\widehat{AFM}=90^0\)

`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`

`=> EA = FA` (2 cạnh tương ứng).

c, *câu này mình hơi bí bn ạ:')

loading...

 

Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:19

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

Vưu Nguyễn Khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 14:00

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là đường cao

BC=12cm nên BM=6cm

=>AM=8(cm)

c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác

=>AI là phân giác của góc BAC

mà AM là phân giác của góc BC

nên A,I,M thẳng hàng

Phạm Thanh Ly Na
Xem chi tiết
Bùi Hạnh Dung
Xem chi tiết
An An Phạm
Xem chi tiết
Kiều Vũ Linh
13 tháng 12 2023 lúc 18:38

loading... a) Do M là trung điểm của BC (gt)

⇒ BM = CM

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆AMB và ∆AMC có:

AM là cạnh chung

AB = AC (cmt)

BM = CM (cmt)

⇒ ∆AMB = ∆AMC (c-c-c)

b) Sửa đề:

Chứng minh AM EF

Giải:

Gọi D là giao điểm của AM và EF

Do ∆AMB = ∆AMC (cmt)

⇒ ∠MAB = ∠MAC (hai góc tương ứng)

⇒ ∠MAE = ∠MAF

Xét hai tam giác vuông: ∆MAE và ∆MAF có:

AM là cạnh chung

∠MAE = ∠MAF (cmt)

⇒ ∆MAE = ∆MAF (cạnh huyền - góc nhọn)

⇒ AE = AF (hai cạnh tương ứng)

Do ∠MAE = ∠MAF (cmt)

⇒ ∠DAE = ∠DAF 

Xét ∆ADE và ∆ADF có:

AD là cạnh chung

∠DAE = ∠DAF (cmt)

AE = AF (cmt)

⇒ ∆ADE = ∆ADF (c-g-c)

⇒ ∠ADE = ∠ADF (hai góc tương ứng)

Mà ∠ADE + ∠ADF = 180⁰ (kề bù)

⇒ ∠ADE = ∠ADF = 180⁰ : 2 = 90⁰

⇒ AD ⊥ EF

Bùi Thúy Ngọc
13 tháng 12 2023 lúc 17:08

.

Kiều Vũ Linh đã xóa