tính giá trị của biểu thức sau:A=1/2+1/3+1/6+1/12+1/15+1/20+1/30+1/35+1/42+1/56+1/63
Tính C=1/2+1/3+1/6+1/12+1/15+1/20+1/30+1/35+1/42+1/56+1/63
I.Tính giá trị của các biểu thức sau bằng cách nhanh nhất :
A = 5/7.8/11 + 5/11.17/7 - 5/21.9/11
B = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63
C = 4^6.9^5+6^9.120/8^4.3^12-6^11
\(A=\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{8}{11}-\dfrac{5}{7}.\dfrac{2}{11}\)
\(A=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{8}{11}-\dfrac{2}{11}\right)\)
\(A=\dfrac{5}{7}.\dfrac{5+8-2}{11}\)
\(A=\dfrac{5}{7}.\dfrac{11}{11}\)
\(A=\dfrac{5}{7}.1=\dfrac{5}{7}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{35}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{63}\)
\(B=\dfrac{95}{72}\)
\(C=\dfrac{4^6.9^5+6^9.120}{8^4-3^{12}-6^{11}}\)
\(C=\dfrac{\left(2^2\right)^3.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(C=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(C=\dfrac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(C=\dfrac{2.6}{5.3}=\dfrac{12}{15}=\dfrac{4}{5}\)
Tính nhanh :
A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99
A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99
= ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 ) + ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )
= ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/8.9 ) + ( 1/1.3 + 1/3.5 + ... + 1/9.11 )
= ( 1 - 1/2 + 1/2 - 1/3 + ... + 1/8 - 1/9 ) + 1/2 . ( 2/1.3 + 2/3.5 + ... + 2/9.11 )
= ( 1 - 1/9 ) + 1/2 . ( 1 - 1/3 + 1/3 - 1.5 + ... + 1/9 - 1/11 )
= 8/9 + 1/2 . ( 1 - 1/11 )
= 8/9 + 1/2 . 10/11
= 8/9 + 5/11
= 133/99
A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99
= ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 ) + ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )
= ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/8.9 ) + ( 1/1.3 + 1/3.5 + ... + 1/9.11 )
= ( 1 - 1/2 + 1/2 - 1/3 + ... + 1/8 - 1/9 ) + 1/2 . ( 2/1.3 + 2/3.5 + ... + 2/9.11 )
= ( 1 - 1/9 ) + 1/2 . ( 1 - 1/3 + 1/3 - 1.5 + ... + 1/9 - 1/11 )
= 8/9 + 1/2 . ( 1 - 1/11 )
= 8/9 + 1/2 . 10/11
= 8/9 + 5/11
= 133/99
A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99
= ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 ) + ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )
= ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/8.9 ) + ( 1/1.3 + 1/3.5 + ... + 1/9.11 )
= ( 1 - 1/2 + 1/2 - 1/3 + ... + 1/8 - 1/9 ) + 1/2 . ( 2/1.3 + 2/3.5 + ... + 2/9.11 )
= ( 1 - 1/9 ) + 1/2 . ( 1 - 1/3 + 1/3 - 1.5 + ... + 1/9 - 1/11 )
= 8/9 + 1/2 . ( 1 - 1/11 )
= 8/9 + 1/2 . 10/11
= 8/9 + 5/11
= 133/99
Tính nhanh
A = \(\dfrac{1}{2}\) + \(^{\dfrac{1}{3}}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{63}\)
Mình đang cần gấp , mong mn giúp mình với ạ
quy đòng r tính nha ra \(\dfrac{199}{33}\)
Tính: 1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90-1/3-1/15-1/35-1/63-1/99-1/143
Các bạn giúp mk nhanh nha
1-1/2+1/2-1/3+1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10-(1-1/3+1/3-3/5+3/5-4/7+5/9-5/9+6/11-6/11-7/13)=1+1/10-1+7/13=83/130
Tính giá trị biểu thức 1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/98
Tính giá trị của biểu thức A = 1/6 + 1/12 +1/20 + 1/30 + 1/42 +1/56
giúp mình giải nhé
ta có:
A= 1/6+1/12+1/20+1/30+1/42+1/56
= 1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
= 1/2-1/8
= 3/8
vậy A= 3/8
2 Tính giá trị biểu thức
9/8-1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/72
tính
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90-1/3-1/15-1/35-1/63-1/99-1/143
Trình bày cách giải
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{11.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=1-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{57}{130}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}-\frac{1}{3}-\frac{1}{15}-.....-\frac{1}{143}\)
\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{143}\right)\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{11.13}\right)\)
\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)\(=\left(\frac{1}{1}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{117}{130}-\frac{78}{130}=\frac{39}{130}=\frac{3}{10}\)