Cho α là góc thỏa mãn sin α = 1 4 .Tính giá trị của biểu thức A = ( sin 4 α + 2 sin 2 α ) cos α
A. 255 128
B. 225 182
C. 255 182
D. 225 128
Cho góc α thỏa mãn 5 sin 2 α - 6 cos α = 0 và 0 < α < π 2 .
Tính giá trị của biểu thức: A = cos ( π 2 - α ) + sin ( 2015 π - α ) - c o t ( 2016 π + α ) .
A. - 2 15
B. 4 15
C. 1 15
D. - 3 5
Cho góc α thỏa mãn tanα = 2. Tính giá trị biểu thức P = 1 + cos α + cos 2 α sin α + sin 2 α
A. P = 4
B. P = 1/2
C. P = 1
D. P = 1/4
Chọn B.
Ta có: 1 + cos2α = 2cos2α và sin2α = 2sinα.cosα.
Mà tanα = 2 nên cot α = 1/2
Suy ra:
Cho góc α thỏa mãn 0 < α < π 4 v à sin α + cos α = 5 2 . Giá trị của biểu thức P = sin α - cosα là:
A. P = 3 2
B. P = 1 2
C. P = - 1 2
D. P = - 3 2
Chọn D.
Xét biểu thức (sin α - cosα ) 2 + (sin α + cosα ) 2 ta có:
(sin α - cosα ) 2 + (sin α + cosα ) 2
= sin 2 α - 2sin α.cosα + cos 2 α + sin 2 α + 2 sin α.cosα + cos 2 α
= 2( sin 2 α + cos 2 α ) =2
⇒ (sin α - cosα ) 2 = 2 - (sin α + cosα ) 2
Cho α là góc thỏa sin α = 1 4 . Tính giá trị của biểu thức A = sin 4 α + 2 sin 2 α cos α
A. 255 128
B. 225 182
C. 255 182
D. 255 128
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
a: pi/2<a<pi
=>sin a>0
\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)
\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)
b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c: \(sin\left(a-\dfrac{pi}{3}\right)\)
\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)
d: \(cos\left(a-\dfrac{pi}{6}\right)\)
\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)
Cho góc α thỏa mãn π < α < 3 π 2 và tan α = 2 : Tính giá trị của biểu thức A = sin 2 α + cos α + π 2
A. 4 + 2 5 10
B. 4 + 5 5 5
C. 4 + 2 5 5
D. 2 + 5 5
Cho góc α thỏa mãn cos α = 3 5 và - π < α < 0 A = sin 2 α - cos 2 α . Tính giá trị biểu thức . A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25
Cho góc α thỏa mãn cos α = 3 5 v à π 4 < α < π 2
Giá trị của biểu thức P = tan 2 α - 2 tan α + 1 là :
A. P = - 1 3
B. P = 1 3
C. P = 5 3
D. P = - 5 3
Cho góc α thỏa mãn: cos α = 3 5 v à - π < α < 0 .Tính giá trị biểu thức: A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25