Trong không gian Oxyz, cho mặt phẳng (P) đi qua ba điểm A(1;1;1), B(2;3;-1), C(0;3;-2). Một vectơ pháp tuyến của mặt phẳng (P) là:
A. n p → = 2 ; 5 ; - 4
B. n p → = 2 ; - 5 ; 4
C. n p → = - 2 ; 5 ; 4
D. n p → = 2 ; - 5 ; - 4
Trong không gian Oxyz, cho ba điểm A(1;0;0), B(0;3;0), C(0;0;-2). Phương trình của mặt phẳng (P) đi qua điểm D(1;1;1) và song song với mặt phẳng (ABC) là
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua ba điểm A(1;0;1), B(0;-1;-3), C(2;1;3)
A. x - y - 1 = 0
B. x - y + 1 = 0
C. x + z - 2 = 0
D. x + y - 1 = 0
Đáp án A
Từ giả thiết ta suy ra:
Từ đó suy ra phương trình của mặt phẳng (P) là: 1(x - 1) - 1(y - 0) = 0 ⇔ x - y - 1 = 0
Trong không gian Oxyz, cho ba điểm A(4;3;2), B(-1;-2;1) và C(-2;2;-1). Phương trình mặt phẳng đi qua A và vuông góc với BC là:
A. x - 4y + 2z + 4 = 0
B. x - 4y - 2z + 4 = 0
C. x - 4y - 2z - 4 = 0
D. x + 4y - 2z - 4 = 0.
Đáp án A
Mặt phẳng cần tìm vuông góc với BC nên nhận làm véc-tơ pháp tuyến.
Mặt phẳng đi qua A, nhận (1;-4;2) làm véctơ pháp tuyến có phương trình là x - 4y + 2z + 4 = 0.
Trong không gian Oxyz, cho ba điểm
A 1 ; 0 ; 0 , B 0 ; 3 ; 0 , C 0 ; 0 ; - 2 . Phương trình của mặt phẳng (P) đi qua điểm D(1;1;1) và song song với mặt phẳng (ABC) là
A. 5 x + 2 y - 3 z - 5 = 0
B. 6 x + y - 3 z - 5 = 0
C. 6 x + 2 y - z + 5 = 0
D. 6 x + 2 y - 3 z - 5 = 0
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua ba điểm A(1 ;0 ;1), B(0 ;-1 ;-3), C(3 ;2 ;5).
A. x - y - 1 = 0
B. x - y + 1 = 0
C. x + z - 2 = 0
D. x + y - 1 = 0
Đáp án A
Từ giả thiết ta suy ra
Mặt khác (P) đi qua điểm A(1 ;0 ;1) nên ta có phương trình của mặt phẳng (P) là : 1(x - 1) - 1(y - 0) = 0 <=> x - y - 1 = 0.
Vậy đáp án đúng là A.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A ( 3 ; 0 ; 0 ) , B ( 0 ; – 4 ; 0 ) , C ( 0 ; 0 ; 4 ) . Viết phương trình mặt phẳng (R) đi qua ba điểm A, B, C.
A. ( R ) : 4 x – 3 y + 3 z – 12 = 0
B. ( R ) : 4 x + 3 y + 3 z + 12 = 0
C. ( R ) : 3 x – 4 y + 4 z – 12 = 0
D. ( R ) : 3 x + 4 y + 4 z + 12 = 0 .
Đáp án là A
(R) là mặt phẳng có phương trình đoạn chắn là
Trong không gian Oxyz, cho ba điểm A(1;0;0), B(0;1;0), C(0;0;1). Số mặt phẳng đi qua gốc toạ độ O và cách đều ba điểm A, B, C là
A. 8
B. 6
C. 4
D. 2
Mặt phẳng cần tìm có dạng
(P):
Theo giả thiết có:
Vậy có tất cả 4 mặt phẳng thoả mãn.
Chọn đáp án C.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;0;0), B(0;–4;0), C(0;0;4). Viết phương trình mặt phẳng (R) đi qua ba điểm A, B, C
A. (R) : 4x – 3y + 3z – 12 = 0
B. (R) : 4x + 3y + 3z + 12 = 0
B. (R) : 3x – 4y + 4z – 12 = 0
D. (R) : 3x + 4y + 4z + 12 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4); B(1;-3;1); C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)
A. l = 2 13
B. l = 2 41
C. l = 2 26
D. l = 2 11
Đáp án C
Gọi I(x;y;0) là tâm của mặt cầu (S) ⇒ A I → = x - 1 ; y - 2 ; 4 A I → = x - 1 ; y + 3 ; - 1 A I → = x - 2 ; y - 2 ; - 3
Theo bài ra, ta có
I A = I B I A = I C ⇒ x - 1 2 + y - 2 2 + 4 2 = x - 1 2 + y + 3 2 + - 1 2 x - 1 2 + y - 2 2 + 4 2 = x - 2 2 + y - 2 2 + - 3 2 ⇔ x = - 2 y = 1
Vậy I ( - 2 ; 1 ; 0 ) ⇒ A I → = ( - 3 ; - 1 ; 4 ) ⇒ l = 2 . I A = 2 16 .