Đáp án D
Từ giả thiết ta suy ra
Từ đó suy ra n p → = (2; -5; -4) là một vectơ pháp tuyến của (P)
Đáp án D
Từ giả thiết ta suy ra
Từ đó suy ra n p → = (2; -5; -4) là một vectơ pháp tuyến của (P)
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1;-2;3) và có vectơ pháp tuyến n → 2 ; - 1 ; - 2 .
A. x – 2y +3z + 2 = 0
B. x – 2y + 3z - 2 = 0
C. 2x - y - 2z + 2 = 0
D. 2x - y + 2z – 3 = 0
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;-7;-8), B(2;-5;-9) sao cho khoảng cách từ điểm M(7;-1;-2) đến (P) lớn nhất có một vecto pháp tuyến là n → = ( a ; b ; 4 ) . Giá trị của tổng a + b là
A. 2
B. -1
C. 6
D. 3
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x - y + 2z – 3 = 0
B. x – y + 2z + 3 = 0
C. x - 2z + 3 = 0
D. x + 2z – 3 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x – 2z + 3 = 0
B. x – y + 2z + 3 = 0
C. x + 2y – z + 3 = 0
D. x - 2z - 3 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x - y + 2z – 3 = 0
B. x - y + 2z + 3 = 0
C. x - 2z + 3 = 0
D. x + 2z – 3 = 0
Trong không gian Oxyz, cho ba điểm A(1;0;0), B(0;3;0), C(0;0;-2). Phương trình của mặt phẳng (P) đi qua điểm D(1;1;1) và song song với mặt phẳng (ABC) là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(0;1;1); B(1;-2;0) và C(1;0;2). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)
A. (-4;2;-2)
B. (2;-1;1)
C. (4;2;2)
D. (2;1;-1)
Trong không gian với hệ tọa độ Oxyz, mặt phẳng đi qua điểm A(2;-3;-2) và có một vectơ pháp tuyến n → = ( 2 ; - 5 ; 1 ) có phương trình là
A. 2x-3y-2z-18=0
B. 2x-5y+z+17=0
C. 2x-5y+z-12=0
D. 2x-5y+z-17=0
Trong không gian Oxyz cho ba điểm A(2; -1; 3), B(4; 0; 1), C(-10; 5; 3). Hãy tìm tọa độ một vecto pháp tuyến của mặt phẳng (ABC).