⇒ một vecto pháp tuyến của mặt phẳng (ABC) là n → (1;2;2)
⇒ một vecto pháp tuyến của mặt phẳng (ABC) là n → (1;2;2)
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x+y-2z+3=0. Một vecto pháp tuyến của mặt phẳng (P) là:
A. (1;1;-2)
B. (0;0;-2)
C. (1;-2;1)
D. (-2;1;1)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)?
Trong không gian tọa độ Oxyz, cho điểm A(2;-1;3), B(4;0;1) và C(-10;5;3). Vecto nào dưới đây là véc tơ pháp tuyến của mặt phẳng (ABC) ?
A. (1;8;2)
B. (1;2;0)
C. (1;2;2)
D. (1;-2;2)
Trong không gian với hệ trục tọa độ Oxyz ,cho 3 điểm A(1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào là một vectơ pháp tuyến của mặt phẳng (ABC)
A. 1 ; 1 2 ; 1 5
B. 1 ; - 1 2 ; - 1 5
C. 1 ; - 1 2 ; 1 5
D. 1 ; 1 2 ; - 1 5
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+3y-4z+5=0. Vecto nào sau đây là 1 vecto pháp tuyến của mặt phẳng (P)?
A. (-4;3;2)
B. (2;3;-4)
C. (2;3;4)
D. (2;3;5)
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 2x-3y-z+5=0. Một vecto pháp tuyến của mặt phẳng (P) là:
A. (2;-3;-1)
B. (2;3;1)
C. (2;-3;1)
D. (2;3;-1)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;2;-1), B(3;4;-2), C(0;1;-1). Vectơ pháp tuyến của mặt phẳng (ABC) là
A. (-1;-1;1)
B. (1;1;-1)
C. (-1;1;0)
D. (-1;1;-1)
Trong không gian Oxyz, một vecto pháp tuyến của mặt phẳng (P): x - 2y + z - 3 = 0 có tọa độ là
A. (1;-2;-3)
B. (1;-2;1)
C. (1;1;-3)
D. (-2;1;-3)
Trong không gian Oxyz, cho mặt phẳng có phương trình x-z-1=0. Một vecto pháp tuyến của (P) có tọa độ là
A. (1;1;-2)
B. (1;-1;0)
C. (1;0;-1)
D. (1;-1;-1)