Chọn C
Phương trình mặt phẳng (P) qua A(1;-2;3), vecto pháp tuyến n → 2 ; - 1 ; - 2
2(x - 1) – 1.(y + 2) – 2.(z – 3) = 0 hay 2x - y – 2z + 2 = 0
Chọn C
Phương trình mặt phẳng (P) qua A(1;-2;3), vecto pháp tuyến n → 2 ; - 1 ; - 2
2(x - 1) – 1.(y + 2) – 2.(z – 3) = 0 hay 2x - y – 2z + 2 = 0
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm N' là ảnh của N(0; 2; 4) quá phép đối xứng qua đường thẳng d.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 2 y - 2 z - 1 = 0 và mặt phẳng ( P ) : x + y + 2 z + 2 = 0 . Giả sử điểm M thuộc (P) và điểm N thuộc (S) sao cho M N → cùng phương với vectơ a → = ( 2 ; - 1 ; 1 ) . Độ dài nhỏ nhất của đoạn MN là:
A. 2 6 +4.
B. 2 6 +2.
C. 2 6 -4.
D. 6 +2.
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian Oxyz, mặt phẳng qua A(1;2;-1) và vuông góc với các mặt phẳng (P): 2x-y+3z-2=0 (Q): x+y+z-1=0 có phương trình là:
xét các vị trị tương đối của mỗi cặp phẳng cho bởi các phương trình sau.
a) x+2y-z+5=0 và 2x+3y-7z-4=0
b) x-2y+z-3=0 và 2x-y+4z-2=0
c) x+y+z-1=0 và 2x+2y+2z+3=0
d) 3x-2y+3z+5=0 và 9x-6y-9z-5=0
e) x-y+2z-4=0 và 10x-10y+20z-40=0
Trong không gian Oxyz, lập phương trình mặt phẳng (P) đi qua điểm A(2;-1;-2) và song song với mặt phẳng (Q): 2x - y + 2z = 0
A. 2x - y + 2z - 1 = 0
B. 2x - y + 2z + 9 = 0
C. 2x - y - 2z + 1 = 0
D. 2x - y + 2z + 1 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; -1; 0) và mặt phẳng (P): x - 2y - 3z + 10 = 0. Phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) là:
A. x - 2y + 3z + 4 = 0
B. -x + 2y + 3z + 4 = 0
C. x - 2y - 3z + 4 = 0
D. x + 2y - 3z = 0.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).