Tìm số phức liên hợp của số phức z = (1-i)(3 + 2i)
A. z ¯ = 1 + i
B. z ¯ = 5 + i
C. z ¯ = 5 - i
D. z ¯ = 1 - i
Cho số phức z, biết ( 2 z - 1 ) ( 1 + i ) + ( z ¯ + 1 ) ( 1 - i ) = 2 - 2 i .
Tìm số phức liên hợp của số phức w=3z-3i
A. 1 3 - 1 3 i
B. 1 3 + 1 3 i
C. 1 - 4 i
D. 1 + 4 i
Chọn D.
Giả sử z=a+bi với a,b ∈ ℝ
Thay vào biểu thức ta được:
Cho số phức z thỏa mãn 2 i − 1 z = z ¯ 1 + i + 3 i . Tìm phần ảo của số phức liên hợp của z.
A. 2
B. -2
C. 2i
D. -2i
Cho số phức z thỏa mãn 2 i - 1 z = z ¯ 1 + i + 3 i Tìm phần ảo của số phức liên hợp của z.
A. –2i
B. 2i
C. –2
D. 2
Tìm số phức liên hợp của số phức z = 1 + i 3 - 2 i + 1 2 + i
A.
B.
C.
D.
Cho số phức z , biết 2 z - 1 1 + i + z ¯ + 1 1 - i = 2 - 2 i . Tìm số phức liên hợp của số phức w = 3 z - 3 i
A. 1 3 - 1 3 i
B. 1 3 + 1 3 i
C. 1 - 4 i
D. 1 + 4 i
Cho số phức z thỏa mãn ( - 1 + i ) z + 2 1 - 2 i = 2 + 3 i . Số phức liên hợp của z là z ¯ = a + b i với a,b thuộc R. Giá trị của a+b bằng
A.-1
B.-12
C.-6
D.1
Cho hai số phức z 1 = 2 + i và z 2 = 5 - 3 i . Số phức liên hợp của số phức z = z 1 ( 3 - 2 i ) + z 2 là
A. z ¯ = - 13 - 4 i
B. z ¯ = - 13 + 4 i
C. z ¯ = 13 - 4 i
D. z ¯ = 13 + 4 i
Cho số phức z thỏa mãn z ( 1 - 2 i ) + z ¯ i = 15 + i
Tìm môđun của số phức z.
A. z = 5
B. z = 4
C. z = 2 5
D. z = 2 3
Đáp án A
Phương pháp
Gọi
Sử dụng định nghĩa hai số phức bằng nhau.
Cách giải
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b