Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
Lê Phương Nhung
Xem chi tiết
Nguyễn thu phương
Xem chi tiết
Tuấn kiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 23:09

a: ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

b: Xét ΔDBC có

BA là trung tuyến

BA=CD/2

=>ΔDBC vuông tại B

c: ΔABD cân tại A có AE là đường cao

nên E là trung điểm của BD

d: Xét ΔDBC có BE/BD=BM/BC

nên EM//DC

Gia Huy
6 tháng 7 2023 lúc 6:47

loading...

loading...

Vũ Thị Thúy Hằng
Xem chi tiết
Phan Thùy Trang
Xem chi tiết
Trần Thị Loan
6 tháng 5 2015 lúc 8:42

A C E D B H M 1 2 1 1

a) Xét tam giác ABC và AED có: AB = AE ; góc BAC = EAD (= 90o); AC = AD

=> tam giác ABC = AED (c - g - c)

b) Trong tam giác vuông AHB có: góc HBA + A2 = 90o

mà góc A1 + A2 = 90o

=> góc A1 = góc HBA mà góc HBA = DEA (tam giác ABC = AED)

=> góc A1 = góc DEA => tam giác MEA cân tại M => ME = MA (1)

Tương tư, trong tam giác vuông AHC có: A2 + HCA = 90o

mà A2 + A1 = 90o 

=> góc HCA = A1 mà góc HCA = MDA ( do tam giác ABC = AED)

=> góc A1 = góc MDA => tam giác MAD cân tại M => MA = MD  (2)

Từ (1)(2) => ME = MD => M là trung điểm của DE => AM là trung tuyến của tam giác ADE

Nguyễn Phương Linh
Xem chi tiết
Dương Thị Hương Sơn
9 tháng 5 2017 lúc 10:21

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

Trần Thùy Dương
3 tháng 5 2018 lúc 15:44

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !

Hiền Nguyễn Thị
8 tháng 5 2018 lúc 9:09

Câu b của bạn Dương Thị Hương Sơn dài. Mình làm cách khác ngắn hơn:

\(\Delta BEM=\Delta CFM\)

=> EB=FC, EM=FM

Ta có: AB-EB= AC - FC hay AE=AF

=> A nằm trên đường trung trực của EF (1)

Ta lại có: EM=FM

=> M nằm trên đường trung trực của EF (2)

Từ (1) và (2) suy ra: đpcm

^-^ Chúc các bạn học tốt. k ủng hộ cho mk nhé cảm ơn các bạn.

phuong
Xem chi tiết
Trần Dương Nguyên Bình
Xem chi tiết
Nguyễn Ngọc Thuỳ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 23:10

a: Xét ΔBAD vuông tại A và ΔBHA vuông tại H có

góc ABD chung

=>ΔBAD đồng dạng với ΔBHA

=>BA/BH=BD/BA

=>BA^2=BH*BD

b: Xét ΔAMB có IE//MB

nên IE/MB=AI/AM

Xét ΔAMC có ID//MC

nên ID/MC=AI/AM

=>IE/MB=ID/MC

mà MB=MC

nên IE=ID

=>I là trung điểm của ED

c: DE//BC

=>DI/BM=HI/HM

=>EI/CM=HI/HM

mà góc EIH=góc HMC

nên ΔIEH đồng dạng với ΔMCH

=>góc IHE=góc MHC

=>C,H,E thẳng hàng