a: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
b: Xét ΔDBC có
BA là trung tuyến
BA=CD/2
=>ΔDBC vuông tại B
c: ΔABD cân tại A có AE là đường cao
nên E là trung điểm của BD
d: Xét ΔDBC có BE/BD=BM/BC
nên EM//DC
a: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
b: Xét ΔDBC có
BA là trung tuyến
BA=CD/2
=>ΔDBC vuông tại B
c: ΔABD cân tại A có AE là đường cao
nên E là trung điểm của BD
d: Xét ΔDBC có BE/BD=BM/BC
nên EM//DC
Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Lấy điểm D thuộc tia đối của tia AC sao cho AD=AC. Vẽ AE cân BD. CMR: a) Tam giác AMB = tam giác AMC từ đó suy ra AM cân BC b) Tam giác BCD vuông ở B c)EB=ED d)Em//CD cà EM=CD/2
Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Lấy điểm D thuộc tia đối của tia AC sao cho AD = AC. Vẽ AE vuông góc với BD. CMR:
a) Tam giác AMB = Tam giác AMC, từ đó suy ra AM vuông góc với BC.
b) Tam giác BCD vuông tại D.
c) EB = ED
d) EM song song với CD và EM = CD/2.
Cho tam giác ABC vuông tại A, vẽ phân giác BE của góc ABC ( E thuộc AC); từ E vẽ EM vuông góc với BC (M thuộc BC)
a/ C/m tam giác ABE= tam giác MBE
b/ C/m AE<EC
c/ trên tia đối tia ME lấy K sao cho MK=ME; trên tia đối của tia AE lấy điểm H sao cho AH=AE. C/m tam giác BHK cân.
d/ C/.m HK//AM
Câu 1. Cho tam giác ABC có góc B =90 độ , vẽ trung tuyến AM . Trên tia đối của tia AM lấy điểm E sao cho ME=AM . C/m rằng :
a. Tam giác ABM=tam giác ECM
b. AC>CE
c. Góc BAM > góc MAC
Câu 2. Cho tam giác ABC cân ở A có AB=AC=17cm ; BC=16cm .Kẻ trung tuyến AM .C/m rằng :
a.AM vuông góc BC
b.Tính độ dài AM
Câu 3. Cho tam giác nhọn nhọn ABC , hai đường cao BM,CN . Trên tia đối của tia BM lấy điểm D sao cho BD =AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB . C/m :
a. góc ACE = góc ABD
b. Tam giác ACE = tam giác DBA
c. Tam giác AED là tam giác vuông cân
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC vuông tại A ( AB > AC )
Gọi M là trung điểm của cạnh BC. Trên tia đối của MA lấy D sao cho MD = MA. Vẽ AH vuông góc BC tại H, trên tia đối của HA lấy E sao cho HE = HA. CMR :
a) Tam giác ABM = Tam giác DCM
b) CD vuông góc AC
c) Tam giác CAE cân
d) BD = CE
e) AE vuông góc ED
Cho tam giác ABC vuông tại A(AB<AC). Trên tia đối AC lấy D sao cho AD=AB. Trên tia đối AB lấy E sao cho AE =AC.
a C/m BC=DE
b C/m Tam giác ABD vuông cân và BD//CE
cKẻ đường cao AH của tam giác ABC cắt DE tại M. Từ A kẻ vuông góc CM tại K, đường thẳng này cắt BC tại N. C/m NM//AB
d C/m AM = DE/2
cho tam giác ABC vuông tại A ( AB>AC). Gọi M là trung điểm cạnh BC Trên tia đối của tia MA lấy D sao cho MD=MA. Vẽ AH vuông góc BC tại H. Trên tia đối của tia HA lấy E sao cho HE=HA. Chứng minh
a. CD vuông góc với AC
b. tam giác CAE cân
c. BD=CE
d. AE vuông góc với ED
cho tam giác ABC có 3 góc nhọn. Trên tia đối của tia AB và AC lấy điểm D và E sao cho: A là trung điểm của BD, A là trung điểm của AC
a) Chứng minh ED=BC
b) Chứng minh EB//DC
c) vẽ AM vuông góc ED (M thuộc ED), vẽ AN vuông góc BC (N thuộc BC). Chứng minh A là trung diểm của MN