Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vua Hải Tặc Vàng
Xem chi tiết
Cô Pé Tóc Mây
Xem chi tiết
Trần Thị Loan
Xem chi tiết
Nhung Khun
8 tháng 1 2016 lúc 22:42

\(\frac{x}{-2}=\frac{9}{y}=\frac{3-2\text{z}}{5}\Rightarrow\frac{-2\text{x}}{4}=\frac{9}{y}=\frac{3-2\text{z}}{5}=\frac{-2\text{x}+3-2\text{z}}{9}=\frac{-2\left(x+z\right)+3}{9}=\frac{1}{3}\Rightarrow\frac{9}{y}=\frac{1}{3}\Rightarrow y=27\)

Bang Bang
8 tháng 1 2016 lúc 22:33

Cho tam giác ABC. DTrên cạnh AB lấy các điểm D và E sao cho  AD=BE. Qua D và E, vẽ các đường thẳng song song vời BC chúng cắt AC theo thứ tự ở M và N. Chứng minh rằng DM+EN=BC

Hướng dẫn: Qua N kẻ  đường thẳng  song song với AB

ai chữa đc bài này em sẽ cho mượn nick Bang Bang LV20, gồm 13 tank: Sát Thủ 4 , Người nhện 4, Gundam 3, Panda 3 , Iron man 3 , Pega3, Ngộ Không 3, Hulk 3, Dark Knight 3, Gost Ride 3, Pea 3, Tedy 3, Captan 2

 

Nguyễn Ngọc Quý
8 tháng 1 2016 lúc 22:37

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Nguyễn Phan Minh Thư
Xem chi tiết
Akai Haruma
7 tháng 9 lúc 20:43

Lời giải:
Áp dụng BĐT AM-GM ta có:

$\frac{x^3}{(y+2z)^2}+\frac{y+2z}{27}+\frac{y+2z}{27}\geq 3\sqrt[3]{\frac{x^3}{(y+2z)^2}.\frac{y+2z}{27}.\frac{y+2z}{27}}=\frac{x}{3}$

$\frac{y^3}{(z+2x)^2}+\frac{z+2x}{27}+\frac{z+2x}{27}\geq \frac{y}{3}$

$\frac{z^3}{(x+2y)^2}+\frac{x+2y}{27}+\frac{x+2y}{27}\geq \frac{z}{3}$

Cộng theo vế các BĐT trên và thu gọn thì:
$\sum \frac{x^3}{(y+2z)^2}+\frac{x+y+z}{9}\geq \frac{x+y+z}{3}$

$\Rightarrow \sum \frac{x^3}{(y+2z)^2}\geq \frac{2}{9}(x+y+z)$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

quachtxuanhong23
Xem chi tiết
Trần Đức
Xem chi tiết
Minh Hiền
7 tháng 1 2016 lúc 9:53

Theo t/c dãy tỉ số = nhau:

\(\frac{9}{y}=\frac{x}{-2}=\frac{2x}{-4}=\frac{3-2z}{5}=\frac{2x-3+2z}{-4-5}=\frac{2.\left(x+z\right)-3}{-9}=\frac{0-3}{-9}=\frac{-3}{-9}=\frac{1}{3}\)

=> \(\frac{9}{y}=\frac{1}{3}\Rightarrow y=9.3=27\).

Nguyễn văn Huy
7 tháng 1 2016 lúc 9:56

27 

tick nha

Anh Đỗ Nguyễn Thu
Xem chi tiết
Akai Haruma
19 tháng 4 2020 lúc 10:42

Lời giải:

BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)

Thật vậy, áp dụng BĐT AM-GM:

\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)

\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)

Nhân theo vế ta có BĐT $(*)$ luôn đúng

Do đó ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

Phạm Thùy Linh
Xem chi tiết
Minh Triều
5 tháng 1 2016 lúc 16:06

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có: }\)

\(\frac{x}{-2}=\frac{3-2z}{5}=\frac{-2x}{4}=\frac{3-2z-2x}{5+4}=\frac{3-2.\left(x+z\right)}{9}=\frac{3-2.0}{9}=\frac{1}{3}\)

\(\text{Suy ra: }\frac{9}{y}=\frac{1}{3}\Rightarrow y=27\)

Killer world
6 tháng 1 2016 lúc 16:31

27

Tik cho mk nha..................cảm ơn rất nhiều

Phạm Thùy Linh
Xem chi tiết