1+1.2+9.99+75.66+27=
TINH
1/1.3+1/3.5+.........+1/9.99
Tìm x :
a . X x 9.99 + X : 100 = 9.8
b. X : 2/3 + X: 2/5 + X =1
a, X:100/999 + X:100=9,8
X:(100/999+100)=9,8
X;100000/999=9,8
X=9,8x10000/999
X=98000/999
b>x.2/3+x.5/2+x=1
x.(2/3+5/2+1)=1
x.25/2=1
x=6/25 Nhớ k nha
a> x.9,99+x:100=9.8
x.9,99+x.0,01=9,8
x.10,09=9.8
x=980/1009
CMR: 1/1.2+1/3.4+...+1/99.100=1/26+1/27+..+1/50
\(VT=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{100}\)
\(VP=\dfrac{1}{26}+\dfrac{1}{27}+...\dfrac{1}{50}=\dfrac{2}{26}+\dfrac{2}{28}+...\dfrac{2}{50}...\)
(VP lần lượt triển khai \(\dfrac{1}{26}=\dfrac{2}{26}-\dfrac{1}{26};\dfrac{1}{28}=\dfrac{2}{28}-\dfrac{1}{28}...\))
Tiếp tục \(\dfrac{2}{26}+\dfrac{2}{28}+...\dfrac{2}{50}...=\dfrac{1}{13}+\dfrac{1}{14}+...\dfrac{1}{25}...\)
(VP lần lượt triển khai \(\dfrac{1}{14}=\dfrac{2}{14}-\dfrac{1}{14};\dfrac{1}{16}=\dfrac{2}{16}-\dfrac{1}{16}...\))
Chuyển sang VT để đơn giản phần số đối \(-\dfrac{1}{2};\dfrac{1}{2}...\)
Cuối cùng ta sẽ được \(VT=1;VP=\dfrac{2}{2}\Rightarrow VT=VP\)
⇒Đpcm
1.
34.75+75.66-65.100
745-5(120-75)-10
20-[30-(5-1)mũ hai]
5 mũ hai -5.ba mũ ba -4.8).19
có ai giúp tôi ko tôi đang cần gấp
\(=75.\left(34+66\right)-65.100\)
\(=75.100-65.100\)
\(=100.\left(75-65\right)\)
\(=100.10\)
\(=1000\)
bạn ơi còn mấy bài trên nữa bạn giúp mk đi cảm ơn bn
1/1.2+1/2.3+...+1/49.50:1/26+1/27+...+1/50
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=\left(\frac{1}{1}-\frac{1}{2}\right)+...+\left(\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Chứng minh 1/(1.2)+1/(3.4)+........+1/(49.50)=1/26+1/27+..........+1/50
Chứng tỏ rằng: 1/1.2+1/2.3+...+1/49.50=1/26+1/27+...+1/50
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
Chứng tỏ rằng: 1/1.2+1/2.3+...+1/49.50=1/26+1/27+...+1/50
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
ỦNg hộ nhà mih lại cho !!!
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
Ung ho nha mih lai cho
cmr A=1/1.2+1/3.4+1/5.6+.......+1/49.50=1/26+1/27+........+1/50
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}=\frac{49}{50}\)
mà A=49/50
=>1/26+1/27+...+1/50 =49/50