Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Suni Hạ Linh
Xem chi tiết
Blitzcrank
Xem chi tiết
nguyen my my
Xem chi tiết
Lê Văn Đăng Khoa
27 tháng 6 2016 lúc 21:31

câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)+3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0

câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)+3b2/2 .a=0 và b=0

Haichau Do
Xem chi tiết
lethithuylinh
Xem chi tiết
pripara lala
Xem chi tiết
Nguyễn Linh Ngọc
4 tháng 9 2017 lúc 20:56

a) /x-2/ nhỏ hơn hoặc bằng 2

vì /a/ \(\ge\)0

mà /x-2/\(\le\)2

\(\Rightarrow\)/x-2/={0;1;2}

Nếu /x-2/=0

   x-2 =0

\(\Rightarrow\)x=2

Nếu /x-2/=1

   x-2  =1

\(\Rightarrow\)x=3

Nếu /x-2/=2

   x-2 =2

\(\Rightarrow\)x=4

Vì x\(\in\)Z nên x={2;3;4}

b) /x-3/ nhỏ hơn hoặc bằng 0

Vì /a/\(\ge\)0

mà /x-3/\(\le\)0

nên /x-3/=0

        x-3 =0

    \(\Rightarrow\)x=3

Ben 10
4 tháng 9 2017 lúc 20:43

1) Giải theo cách lớp 8 nhé: 
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng. 
(x + y)² >= 4xy 
(y + z)² >= 4yz 
(x + z)² >= 4xz 
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z² 
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0) 
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0. 
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*) 
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0 
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0 
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0 
<=> a - b + b - c + c - a = 0 
<=> 0 = 0 (1) 

Nguyễn Thùy Dương
Xem chi tiết
Nguyễn Thanh Dung
Xem chi tiết
Lê Nhật Khôi
11 tháng 1 2018 lúc 17:56

không hiểu j hết

camcon
Xem chi tiết
camcon
12 tháng 8 2021 lúc 21:09
Akai Haruma
12 tháng 8 2021 lúc 23:03

Em không nêu ra yêu cầu và các điều kiện liên quan của đề bài thì làm sao mn giúp em được?

Akai Haruma
13 tháng 8 2021 lúc 10:33

camcon                                                         :

Ví dụ như của em: Giải bất phương trình $x^2>4$.

Ta đưa về dạng 1 vế chứa 0 như sau:

$x^2>4$

$\Leftrightarrow x^2-4>0$

$\Leftrightarrow (x-2)(x+2)>0$

Đến đây ta có 2 TH xảy ra:

TH1: \(\left\{\begin{matrix} x-2>0\\ x+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>2\\ x>-2\end{matrix}\right.\Rightarrow x>2\)

TH2: \(\left\{\begin{matrix} x-2< 0\\ x+2< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x< -2\end{matrix}\right.\Rightarrow x< -2\)

Vậy tóm lại $x>2$ hoặc $x< -2$