Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết

a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)

=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)

Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)

=>-1,5m=3

=>m=-2

b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)

=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)

Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2

=>m=2

c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)

=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)

=>2/b=2

=>b=1

=>\(y=\dfrac{ax+1}{x-2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)

=>a=3

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 1 2017 lúc 10:53

Đáp án: A.

Nhận xét rằng hàm số dạng Giải sách bài tập Toán 12 | Giải sbt Toán 12 (a, b ≠ 0) có tiệm cận đứng là Giải sách bài tập Toán 12 | Giải sbt Toán 12 và tiệm cận ngang là y = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2018 lúc 10:43

Đáp án B

Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .

Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒  Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.

Tiệm cận đứng: x=3; tiệm cận ngang:  y=1. Đồ thị hàm số nhận giao điểm   I 3 ; 1  của hai đường tiệm cận làm tâm đối xứng.

Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4  đúng và chọn ngay A.

Tuy nhiên đây là phương án sai.

Phân tích sai lầm:

Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3  và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.

Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.

Mệnh đề 3 , 4  đúng.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2017 lúc 4:39

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2017 lúc 10:53

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 11 2019 lúc 7:22

Đáp án: A.

Nhận xét rằng hàm số dạng Giải sách bài tập Toán 12 | Giải sbt Toán 12 (a, b ≠ 0) có tiệm cận đứng là Giải sách bài tập Toán 12 | Giải sbt Toán 12 và tiệm cận ngang là y = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2019 lúc 13:21

Phương pháp:

Dựa vào các tính chất của đồ thị hàm số mũ và hàm số logarit.

Cách giải:

Cả 4 phát biểu đều đúng
Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2018 lúc 9:41

Chọn D.

Nếu hệ số góc của tiếp tuyến khác không thì tiếp tuyến và đường tiệm cận luôn cắt nhau. Nếu đồ thị hàm số có tiệm cận đứng thì tiệm cận đứng luôn cắt tiếp tuyến. Do đó để thỏa mãn yêu cầu bài toán thì đồ thị hàm số chỉ có tiệm cận ngang. Vậy điều kiện cần là a>0. Khi đó đồ thị hàm số có tiệm cận ngang là

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2018 lúc 13:54

Đáp án: C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 4 2018 lúc 2:48